Кинетика химических процессов и химическое равновесие. VI. Химическая кинетика и равновесие. Скорость химических реакций

Химическая кинетика

Химическое равновесие

Химическая кинетика – раздел химии, который изучает скорость химической реакции и факторы влияющие на неё.

О принципиальной осуществимости процесса судят по значению изменения энергии Гиббса системы. Однако оно ничего не говорит о реальной возможности реакции в данных условиях, не даёт представления о скорости и механизме процесса.

Изучение скоростей реакций позволяет выяснить механизм сложных химических превращений. Это создаёт перспективу для управления химическим процессом, позволяет осуществлять математическое моделирование процессов.

Реакции могут быть:

1. гомогенными – протекают в одной среде (в газовой фазе); проходят во всём объёме;

2. гетерогенными – протекают не в одной среде (между веществами, находящимися в разных фазах); проходят на границе раздела.

Под скоростью химической реакции понимают число элементарных актов реакции, проходящих в единицу времени в единице объёма (для гомогенных реакций) и на единицу поверхности (для гетерогенных реакций).

Так как при реакции изменяется концентрация реагирующих веществ, то скорость обычно определяют как изменение концентрации реагентов в единицу времени и выражают в . При этом нет необходимости следить за изменением концентрации всех веществ, входящих в реакцию, поскольку стехиометрический коэффициент в уравнении реакции устанавливает соотношение между концентрациями, т.е. при скорость накопления аммиака вдвое больше скорости расходования водорода.


, , т.к. не может быть отрицательной, поэтому ставят «–».

Скорость в интервале времени истинная мгновенная скорость – 1‑ая производная концентрации по времени.

Скорость химических реакций зависит :

1. от природы реагирующих веществ;

2. от концентрации реагентов;

3. от катализатора;

4. от температуры;

5. от степени измельчения твёрдого вещества (гетерогенные реакции);

6. от среды (растворы);

7. от формы реактора (цепные реакции);

8. от освещения (фотохимические реакции).

Основной закон химической кинетики – закон действующих масс : скорость химической реакции пропорциональна произведению концентраций реагирующих веществ в реакции

где – постоянная скорости химической реакции

Физический смысл при .

Если в реакции участвуют не 2‑е частицы, а более , то: ~ в степенях, равных стехиометрическим коэффициентам, т.е.: , где

– показатель порядка реакции в целом (реакции первого, второго, третьего … порядков).

Число частиц, участвующих в этом акте реакции определяет молекулярность реакции :

Мономолекулярная ()

Бимолекулярная ()

Тримолекулярная.

Больше 3‑х не бывает, т.к. столкновение более 3‑х частиц сразу – маловероятно.

Когда реакция идёт в несколько стадий, то общая реакции = наиболее медленной стадии (лимитирующей стадии).

Зависимость скорости реакции от температуры определяется эмпирическим правилом Вант-Гоффа : при увеличении температуры на , скорость химической реакции увеличивается в 2 – 4 раза: .


где – температурный коэффициент скорости химической реакции .

Не всякое столкновение молекул сопровождается их взаимодействием. Большинство молекул отскакивают как упругие шарики. И только активные при столкновении взаимодействуют друг с другом. Активные молекулы обладают некоторой избыточной но сравнению с неактивными молекулами, поэтому в активных молекулах связи между ними ослаблены.

Энергия для перевода молекулы в активное состояние – энергия активации . Чем она меньше, тем больше частиц реагируют, тем больше скорость химической реакции.

Величина зависит от природы реагирующих веществ. Она меньше диссоциации – наименее прочной связи в реагентах.

Изменение в ходе реакции:

Выделяется (экзотермическая)


С увеличением температуры число активных молекул растёт, поэтому увеличивается.

Константа химической реакции связана с

где – предэкспоненциальный множитель (связан с вероятностью и числом столкновений).

В зависимости от природы реагирующих веществ и условий их взаимодействия, в элементарных актах реакций могут принимать участие атомы, молекулы, радикалы или ионы.

Свободные радикалы чрезвычайно реакционноспособны, активных радикальных реакций очень мала ().

Образование свободных радикалов может происходить в процессе распада веществ при температуре, освещении, под действием ядерных излучений, при электроразряде, сильных механических воздействиях.

Многие реакции протекают по цепному механизму . Особенность цепных реакций состоит в том, что один первичный акт активации приводит к превращению огромного числа молекул исходных веществ.

Например: .

При обычной температуре и рассеянном освещении реакция протекает крайне медленно. При нагревании смеси газов или действия света, богатого УФ лучами (прямой солнечный свет, свет от горящего ) смесь взрывается.

Эта реакция протекает через отдельные элементарные процессы. Прежде всего, за счёт поглощения кванта энергии УФ лучей (или температуры) молекула диссоциируется на свободные радикалы – атомы : , затем , затем и т.д.

Естественно, возможно столкновение свободных радикалов и друг с другом, что приводит к обрыву цепей: .

Кроме температуры на реакционную способность веществ существенное влияние оказывает свет. Воздействие света (видимого, УФ) на реакции изучает раздел химии – фотохимия.

Фотохимические процессы весьма разнообразны. При фотохимическом действии молекулы реагирующих веществ, поглощая кванты света, возбуждаются, т.е. становятся реакционноспособными или распадаются на ионы и свободные радикалы. На фотохимических процессах основана фотография – воздействие света на светочувствительные материалы (фотосинтез).

Одним из наиболее распространённых в химической практике методов ускорения химических реакций является катализ . Катализаторы – вещества, изменяющие химической реакции за счёт участия в промежуточном химическом взаимодействии с компонентами реакции, но восстанавливающие после каждого цикла промежуточного взаимодействия свой химический состав.

Увеличение каталитической реакции связано с меньшей нового пути реакции. Т.к. в выражении для входит в отрицательный показатель степени, то даже небольшое уменьшение вызывает очень большое увеличение химической реакции.

Существуют 2 вида катализаторов :

гомокатализаторы;

гетерокатализаторы.

Биологические катализаторы – ферменты .

Ингибиторы – вещества, замедляющие химической реакции.

Промоторы – вещества, усиливающие действие катализаторов.

Реакции, которые протекают только в одном направлении и идут до конца – необратимые (образование осадка, выделение газа). Их мало.

Большинство реакций – обратимые : .

Согласно закону действия масс: химическое равновесие .

Состояние системы, в которой прямой реакции = обратной реакции, называется химическим равновесием .

.

С увеличением температуры, : для эндотермической реакции возрастает, для экзотермической реакции убывает для остаётся постоянным.

Влияние различных факторов на положение химического равновесия определяется принципом Ла-Шателье : если на систему, находящуюся в равновесии, оказать какое-либо воздействие, то в системе усиливаются процессы, стремящиеся уменьшить это воздействие.

ХИМИЧЕСКАЯ КИНЕТИКА И ХИМИЧЕСКОЕ РАВНОВЕСИЕ
Скорость любой химической реакции зависит от условий, в которых она протекает: от концентрации реагентов (или их давления, если это газы), температуры, наличия катализатора или излучения и т.д. Одни реакции протекают практически мгновенно (например, нейтрализация кислоты основанием), другие при обычных условиях идут настолько медленно, что заметные изменения концентраций реагентов наблюдаются лишь через несколько лет (например, взаимодействие водорода с кислородом с образованием воды в отсутствие катализатора). При этом существует множество реакций, протекающих с вполне измеримыми скоростями в обычных условиях. Химическая кинетика занимается определением скоростей химических реакций и изучением их механизма. Это относительно молодая наука, и в ней имеется много нерешенных проблем. Во всех кинетических исследованиях фигурируют время и промежуточные продукты (вещества, образующиеся на промежуточных стадиях реакции). Этим они отличаются от исследований систем в условиях химического равновесия, когда рассматриваются только начальное и конечное состояния реагентов.
См. также ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА .
ХИМИЧЕСКАЯ КИНЕТИКА
В одном кинетическом эксперименте нередко участвуют одновременно две или несколько реакций, при этом их скорости могут зависеть от наличия загрязнений и следов катализаторов. В результате получаемые данные бывают плохо воспроизводимыми, что затрудняет их интерпретацию. Если с термодинамической точки зрения из одних и тех же исходных веществ возможно образование разных продуктов, следует подбором концентрации реагентов, температуры и специфического катализатора добиться, чтобы протекала именно та реакция, которая интересует исследователя. Скорость реакций обычно определяют при постоянной температуре, лучше при двух и более ее значениях, используя один или несколько высокоточных термостатов.
Измерение скоростей реакций. Скорости реакций измеряют разными способами. Можно отбирать пробы из термостатируемого реактора через строго определенные интервалы времени либо замедлять или полностью останавливать реакцию (быстрым охлаждением реактора или каким-либо иным способом) и анализировать пробы титрованием или другими аналитическими методами. Иногда одновременно запускают несколько идентичных реакций, а затем последовательно останавливают их быстрым охлаждением и анализируют продукты. Если один из реагентов или продуктов реакции обладает оптической активностью, то следят за его концентрацией с помощью поляриметра. Аналогично, если изменение концентрации реагента или продукта реакции либо их обоих сопровождается изменением электропроводности, для кинетических измерений используют электрические методы. Иногда концентрацию одного из реагирующих веществ определяют, измеряя оптическую плотность раствора при определенной длине волны и используя закон Ламберта - Бера.
См. также ХИМИЯ АНАЛИТИЧЕСКАЯ . Скорость реакции можно рассчитать исходя из данных об изменении давления или объема в газофазной системе либо объема газа, выделяющегося в ходе реакции. В случае газофазных реакций, протекающих в потоке, в реактор иногда вводят катализатор или повышают температуру, чтобы ускорить процесс. Входные и выходные трубки в таких системах делают достаточно малыми, чтобы газы поступали в реактор и выходили из него как можно быстрее и в области с неконтролируемым градиентом температуры находились непродолжительное время. Время нахождения газов в реакторе (время протекания реакции) определяют исходя из объема газов, проходящих через реактор в 1 с, отнесенного к объему реактора. Если общее число молекул в ходе реакции изменяется, то оценить время становится довольно трудно. В проточных системах используются большие количества реагентов и получаются большие количества продуктов, что облегчает моделирование соответствующих химических процессов в промышленных масштабах. Скорость реакции можно определить по уменьшению концентрации исходных веществ или по увеличению концентрации продуктов. Скорость уменьшения концентрации исходного вещества равна -dC/dt, а скорость увеличения концентрации продукта равна dC/dt, где С - концентрация, t - время. Концентрацию обычно измеряют в единицах молярности (моль/л), время - в секундах.
Порядок реакции. Порядок реакции - это эмпирическая величина, равная сумме показателей степеней, с которыми концентрации реагентов входят в выражение для скорости реакции. Так, для реакции aA + bB -> mM + nN скорость уменьшения концентрации С реагента А можно представить в виде

Где СА и СВ - концентрации исходных веществ А и В соответственно. Порядок реакции в этом случае равен а + b. Коэффициент пропорциональности k, входящий в уравнение, называется константой скорости. Он равен скорости реакции при единичной концентрации реагентов.
Реакции первого порядка. Если скорость реакции зависит от концентрации только одного реагента в первой степени, то выражение для скорости принимает вид

О такой реакции говорят, что она является реакцией первого порядка. Чтобы найти зависимость концентрации от времени, нужно проинтегрировать уравнение (1). Разделив переменные и проинтегрировав, получим -ln C = kt + const
где ln - натуральный логарифм. Или, перейдя к десятичным логарифмам:


График зависимости lg C от t является прямой с тангенсом угла наклона -s, равным -k/2,303. Отсюда k = 2,303*s
Зная k и концентрацию С при данном t, можно найти константу интегрирования (const) и рассчитать концентрацию для любого момента времени. Константу интегрирования можно также определить из координат точки пересечения прямой с осью lg C при t = 0 (рис. 1).



Уравнение (1) можно проинтегрировать в пределах от С1 до С2, равных концентрациям реагента в моменты времени t1 и t2:

Отсюда


Размерность k равна размерности t -1. Если в начальный момент времени (t1 = 0) C1 = C0, то концентрация C в любой момент времени t в соответствии с уравнением (2) будет равна


Уравнение (1) можно записать в другом виде, приняв, что а - это начальное количество реагента, x - его количество, прореагировавшее за время t. Тогда (а - x) равно количеству реагента, оставшемуся через время t, и уравнение реакции примет вид


Разделив переменные и проинтегрировав, получим -ln(a - x) = kt + const
отсюда при t = 0, x = 0 и const = -ln a


Часто представляет интерес характеристическая величина t1/2 - время полупревращения реакции, т.е. время, за которое концентрация исходного вещества уменьшается вдвое. При x = (1/2)a и t = t1/2 из уравнения (3) получим


Это соотношение иллюстрирует важную особенность реакций первого порядка: время, за которое количество вещества уменьшается вдвое, не зависит от его количества в момент начала реакции и в любой данный момент реакции. Если известна константа скорости k, можно рассчитать количество вещества, прореагировавшего к данному моменту времени, или определить, за какое время прореагирует данное количество вещества. Уравнению первого порядка следуют многие химические реакции. Например, пентаоксид азота, растворенный в тетрахлориде углерода, разлагается при температуре 45° С в строгом соответствии с уравнением реакции первого порядка:


Реакции второго порядка. Когда скорость реакции пропорциональна квадрату концентрации отдельного реагента или концентрациям каждого из двух реагирующих веществ в первой степени, мы имеем дело с реакцией второго порядка. В дифференциальной форме выражения для скорости такой реакции имеют вид

И

Пусть a - начальная молярная концентрация реагента А, x - число его молей в 1 л, прореагировавшее за время t; тогда скорость реакции будет равна dx/dt = k(a - x)2
или dx/(a - x)2 = kdt
Проинтегрировав, получим 1/(a - x) = kt + C
Поскольку x = 0 при t = 0, константа С = 1/а. Отсюда

И


Если а и b - начальные молярные концентрации реагентов А и В соответственно и если за время t прореагировало x молей этих реагентов в 1 л, то, проинтегрировав соответствующее уравнение для скорости реакции, можно найти выражение для константы скорости:

Размерность k - л/(моль*с). Численное значение k можно найти, подставив концентрации и время в уравнение (4) либо построив графики зависимости

Или

От времени. Умножение наклона полученной таким образом прямой на 2,303/(a - b) дает k.
Реакции третьего порядка. Скорость реакции третьего порядка может зависеть от концентрации одного реагента в третьей степени, либо концентрации одного реагента во второй степени и второго реагента в первой степени, либо от концентрации каждого из трех реагентов в первой степени. Так,

Или dx/dt = k(a - x)3
Разделение переменных и интегрирование дают


или


Здесь размерность k - л2/(моль2*с). Реакции нулевого порядка. Скорость реакций нулевого порядка не зависит от концентраций реагентов и определяется другими лимитирующими факторами, например площадью поверхности катализатора (в реакциях гетерогенного катализа) или поглощением света (в фотохимических реакциях). Уравнение для скорости такой реакции в дифференциальной форме имеет вид -dC/dt = k
или, выраженное через концентрацию x продукта, dx/dt = k
Проинтегрировав, получим x = kt + C
Значению x = 0 соответствует t = 0, откуда константа С = 0 и x = kt
В величину k могут входить различные константы, например интенсивность света, концентрация насыщенного раствора или пара. Размерность k - моль/(лЧс).
Реакции п-го порядка. В общем случае для реакции порядка п при п > 1 связь между концентрацией и временем для конечного времени наблюдения описывается уравнением


где С - концентрация реагента в момент времени t, C0 - начальная концентрация. График зависимости 1/(Сn - 1) от t представляет собой прямую с наклоном (n-1) k. Размерность k - (моль/л)1 - n/c. Реакции не всегда имеют целочисленный порядок. Показатели степени при концентрациях в выражении для скорости часто являются дробными. Однако и в этом случае порядок реакции равен сумме показателей степеней. Например, для реакции, скорость которой равна


порядок п = 0,7 + 1,8 = 2,5. Часто порядок реакции, определяемый экспериментально, не соответствует порядку, который следует из стехиометрического уравнения. Большинство химических реакций включает две или несколько стадий, протекающих одновременно, что приводит к более сложным выражениям для скорости.
Определение порядка реакции. Подстановка в формулы. Если k остается постоянной при подстановке значений концентрации и времени в уравнение скорости реакции, значит, порядок реакции, задаваемый уравнением, верен. Если же расчеты не согласуются с экспериментальными данными, то реакция сложнее, чем предполагалось, и, вероятно, протекает в две или несколько стадий.
Графический метод. Для определения порядка реакции можно прибегнуть к графическому представлению функций, описывающих зависимость концентрации от времени. Если при построении зависимости С от t получается прямая, это означает, что реакция - нулевого порядка. Если линейна зависимость lg C от t, имеет место реакция первого порядка. При условии что начальная концентрация всех реагентов одинакова, реакция имеет второй порядок, если линейным является график зависимости 1/С от t, и третий - в случае линейности зависимости 1/С 2 от t.
Определение времени полупревращения. Для реакции первого порядка время, за которое прореагирует определенная часть реагента (например, половина), не зависит от начальной концентрации (см. выше),


Для реакции второго порядка при равенстве начальных концентраций обоих реагентов, а = b, время, за которое прореагирует половина вещества, обратно пропорционально начальной концентрации. Из приведенного выше выражения для константы скорости реакции второго порядка получаем

Или
t1/2 = 1/ka
Изменение соотношения между реагентами. Если выражение для скорости представить как


где СА, СВ, СС... - концентрации участвующих в реакции веществ А, В и С..., а а, b, с... - соответствующие показатели степени в уравнении для скорости, то порядок реакции п можно определить, увеличив вдвое значение СА без изменения СВ и СС и экспериментально определив величину Dx/Dt для СА и 2СА. Так, если -


скорость при концентрации 2СА, а

Скорость при концентрации СА, то, взяв отношение этих двух величин, получим


Предположим, что наблюдаемое отношение

Равно 4; тогда а = 2 и реакция является реакцией второго порядка относительно реагента А. Если это отношение равно 2, то а = 1 и имеет место реакция первого порядка относительно того же реагента. Аналогичным образом определяют b, с и т.д.
Добавление избытка реагентов. Добавив в реакционную смесь в большом избытке все реагирующие вещества, кроме одного, можно определить порядок реакции по этому реагенту, т.е. показатель степени, с которым концентрация данного реагента входит в уравнение скорости. Таким же образом определяют порядок реакции по каждому реагенту. Показатель степени для концентрации реагента А, не находящегося в избытке, устанавливают по графику зависимости dCA/dt от ln CA согласно уравнению


Наклон полученной прямой равен а. Константа kў является произведением константы скорости на концентрации реагентов, находящихся в избытке, взятые в соответствующих степенях. Молекулярность реакции определяется числом молекул, участвующих в самой медленной, лимитирующей стадии. Реакции бывают моно-, би-, три- и т.д. молекулярными. Порядок реакции и ее молекулярность не всегда можно предсказать исходя из стехиометрии реакции; для этого нужно провести кинетические измерения. В некоторых случаях порядок и молекулярность реакции, определенные исходя из ее стехиометрии, совпадают. Мономолекулярной называется такая реакция, в которой лимитирующей стадией является превращение одной молекулы, например распад ее на составляющие (диссоциация молекул иода I2 -> 2I) или превращение в другую молекулу в результате внутримолекулярной перестройки:


Бимолекулярная реакция - это взаимодействие двух молекул (например, молекулярного водорода с молекулярным иодом, H2 + I2 (r) 2HI). Реакция, протекающая одновременно с участием трех молекул, называется тримолекулярной. Поскольку вероятность столкновения сразу трех молекул, да еще в правильной взаимной ориентации, очень мала, такие реакции происходят редко.
Механизм химических реакций. При изучении механизма любой химической реакции рассматривают столкновение между отдельными реагирующими частицами (классическая теория столкновений) и другие элементарные акты с участием этих частиц. Учитывается также взаимная пространственная ориентация (стереохимия) реагирующих молекул. Считается, что реакция проходит через образование промежуточного комплекса, и для установления ее механизма необходимо знать состав и геометрию этого комплекса - межатомные расстояния и валентные углы. Реакции, называемые цепными, протекают через последовательность стадий. Продолжение цепи инициируют высокоэнергетические атомы или свободные радикалы. Рассмотрим фотохимическую реакцию образования хлороводорода. Под действием света молекула хлора распадается с образованием атомарного хлора. Атомы хлора реагируют с молекулой водорода с образованием HCl и атомарного водорода. Последний реагирует с молекулой хлора, вновь образуя HCl и высвобождая атом хлора:


(точкой в верхнем индексе обозначается неспаренный электрон в валентной оболочке атомов; этим подчеркивается, что атомы и являются высокоактивными свободными радикалами). Иногда эта цепь взаимодействий продолжается до тех пор, пока не прореагируют более миллиона молекул на каждый образовавшийся при фотодиссоциации атом хлора. Если два атома, ответственные за рост цепи (и),прореагируют друг с другом с образованием НCl или если один из них потеряет энергию в результате столкновений со стенками реактора либо с посторонними частицами, цепь прервется. Важным параметром, определяющим скорость газофазных реакций, является число столкновений между молекулами в единицу времени, которые имеют подходящую ориентацию и обладают достаточной для вступления в реакцию энергией. Частота и энергия соударений зависят от размера частиц и их средней скорости. В качестве иллюстрации того, как с помощью кинетических данных можно получить информацию о механизме химических реакций, рассмотрим образование HI и HBr: H2 + I2 = 2HI и H2 + Br2 = 2HBr
Стехиометрические уравнения этих реакций идентичны. Однако кинетические измерения скоростей реакций показывают, что их механизмы совершенно различны. Для первой реакции, в которой происходит столкновение молекул водорода и иода, увеличение концентрации HI во времени определяется уравнением d[]/dt = k[][] где [] и [] - молярные концентрации водорода и иода, k - константа скорости реакции. В то же время, как показывают кинетические измерения, увеличение во времени концентрации HBr следует уравнению


где [], [] и [] - молярные концентрации водорода, брома и бромоводорода, k и k" - константы. Реакция идет по цепному механизму, аналогичному тому, в соответствии с которым реагируют между собой хлор и водород с образованием хлороводорода: Br2 = 2Br, Br + H2 = HBr + H, H + Br2 = HBr + Br и т.д.
Выражение для скорости полной реакции можно получить, используя уравнения скоростей каждой из ее стадий. Температурные коэффициенты скоростей реакций. В диапазоне температур, близких к комнатной, скорость многих реакций удваивается или утраивается при повышении температуры на каждые 10°. С.Аррениус предложил следующее уравнение, описывающее зависимость константы скорости реакции от температуры: k = s exp(-DHa/RT)
Предэкспоненциальный множитель s называется аррениусовским частотным фактором и в бимолекулярной реакции определяется частотой столкновений молекул, которые имеют подходящую ориентацию для того, чтобы вступить в химическое взаимодействие, DНа - теплота (или энтальпия) активации, R - универсальная газовая постоянная []. DНа равна кинетической энергии, которой должны обладать сталкивающиеся частицы, чтобы преодолеть их взаимное отталкивание и образовать продукты. Уравнение Аррениуса можно записать в дифференциальной форме:


Интегрирование в предположении, что DНа не зависит от Т, дает

Откуда

Интегрирование в предположении независимости DНа от Т дает


или

Из уравнения (5) следует, что график зависимости ln k от 1/Т является прямой с наклоном -DНа/R, откуда DНа можно определить как -RЧs (где s - тангенс наклона прямой). Используя данное значение DНа и значение k при одной температуре, можно найти частотный фактор и затем рассчитать k при любой другой температуре из температурного диапазона, в котором сохраняется постоянной величина DНа. Член ln s в уравнении Аррениуса можно также определить графически, экстраполяцией графика зависимости ln k от 1/T к 1/Т = 0. В этой точке ln k = ln s (рис. 2).



Экспоненциальный член exp(-DНа/RT) в уравнении (6) равен доле молекул с энтальпией, т.е. молекул, обладающих достаточной энергией, чтобы вступить в реакцию. Для бимолекулярных реакций аррениусовский частотный фактор можно представить как число столкновений в единицу времени в единице объема между молекулами, имеющими нужную ориентацию. Таким образом, k определяется числом столкновений химически активных и ориентированных нужным образом молекул. В рамках теории абсолютных скоростей реакций (или термодинамической теории) частотный фактор можно представить как


где x - трансмиссионный коэффициент, представляющий собой долю молекул, энергия которых превышает энергетический барьер на пути перехода от реагентов к продуктам, k - константа Больцмана, h - постоянная Планка, DSа - энтропия активации на моль реагента. DSа является мерой относительного числа степеней свободы молекул в активированном и исходном состояниях (т.е. числа независимых типов колебаний и вращений). Для некоторых мономолекулярных газофазных реакций распада активированный комплекс настолько близок по своей структуре к исходным реагентам, что изменение энтропии очень мало, т.е. DSа можно принять равным нулю. В этих случаях


,


и если x = 1, то константа скорости реакции определяется выражением


При 27° С (300 К)


(N - число Авогадро). Отсюда получаем приближенное уравнение для мономолекулярных реакций:

И менее точное уравнение для бимолекулярных реакций:

Где 10 10 в первом приближении равно числу столкновений молекул при комнатной температуре, если концентрации выражены в моль/л.
ХИМИЧЕСКОЕ РАВНОВЕСИЕ
Обратимость и равновесие. Обратимая химическая реакция - это реакция, в ходе которой происходят превращения как в прямом, так и в обратном направлениях. Первым, кто четко сформулировал представление об обратимости химических реакций, был К.Бертолле (1799). Участвуя в Египетской экспедиции Бонапарта, он обратил внимание на образование карбоната натрия в соляных озерах и пришел к заключению, что карбонат натрия образуется в результате взаимодействия между насыщенным раствором хлорида натрия и растворенным карбонатом кальция. Этот процесс обратен проводимой в лаборатории реакции между карбонатом натрия и растворенным хлоридом кальция с образованием карбоната кальция. В 1864 К.Гульдберг и П.Вааге открыли закон действующих масс, согласно которому скорость химической реакции прямо пропорциональна концентрации реагирующих веществ. Положение равновесия можно определить, зная скорости прямой и обратной реакций. Уравнение обратимой реакции имеет вид


Если СА, СВ, СL и СМ - молярные концентрации веществ А, В, L и М; а, b, l и m - соответствующие стехиометрические коэффициенты, k1 и k2 - константы скорости прямой и обратной реакций, то


В равновесии скорости прямой и обратной реакций равны:


и


где С - равновесная концентрация соответствующего вещества, KС - константа химического равновесия, выраженная через концентрации. Более строгий подход к выводу выражения для константы равновесия основан на принципах термодинамики. Можно показать, что в условиях равновесия (при равновесных концентрациях реагентов и продуктов) стандартное изменение свободной энергии системы определяется уравнением


Поскольку DF0 при постоянной температуре является константой, то и KС тоже константа, равная


Для газофазных реакций константу равновесия можно выразить через парциальные давления реагентов:


Представленная таким образом константа равновесия отличается от KС, выраженной через молярные концентрации, соответственно различаются и DF0 для этих двух случаев. Поясним, что такое изменение свободной энергии DF0 в ходе химической реакции. При постоянных температуре и давлении уменьшение свободной энергии является максимальной работой, которую можно совершить в ходе процесса, причем эта работа не связана с изменением объема или давления в системе. Стандартное изменение свободной энергии DF0 равно разности свободных энергий реагентов и продуктов в стандартных состояниях. Такое состояние для идеального газа - давление 1 атм, а для твердых веществ или жидкостей - их наиболее стабильная форма при давлении 1 атм и определенной температуре. Для идеального растворенного вещества стандартным является состояние при концентрации 1 моль на 1000 г растворителя (моляльная концентрация). Для газофазных реакций KС можно связать с Kр, используя уравнение состояния идеального газа: C = 1/V = p/RT
где V - объем, занимаемый одним молем газа, R - газовая постоянная, Т - абсолютная температура,


где Dn = (l + m) - (a + b) разность между суммой молей продуктов реакции и суммой молей исходных реагентов; эта разность определяется коэффициентами стехиометрического уравнения реакции. Следует иметь в виду, что DF0 - это разность свободных энергий реагентов и продуктов в их стандартных состояниях, а именно при концентрации растворенных веществ 1 М и давлении газов 1 атм, а рассчитывается эта разность свободных энергий по данным для равновесных концентрации и давления.
Равновесие в газофазных системах. Рассмотрим диссоциацию N2O4 (тетраоксид диазота) на две молекулы диоксида азота (NО2). Мол. масса N2O4 равна 92; это бурый газ с т. кип. 21,3° С. При нагревании цвет газа меняется до черного. При температуре 140° С происходит полная диссоциация N2O4 на NO2 с мол. массой 46 в соответствии с уравнением

Пусть a - мольная доля газа, подвергшегося диссоциации, а из каждого моля получается n молей газообразных продуктов; тогда общее число молей газа будет равно 1 - a + na = 1 + (n - 1)a
Плотность данной массы газа при постоянном давлении обратно пропорциональна числу молей. Обозначим через d1 плотность недиссоциированного газа, а через d2 - плотность смеси исходного и диссоциированного газа при том же давлении. Тогда


и


Заменив плотности на мол. массы, получим


где М1 - мол. масса недиссоциированного газа, М2 - средняя мол. масса смеси исходного и диссоциированного газа. Поскольку для данной реакции n = 2 и общее число молей газа в смеси равно 1 - a + 2a = 1 + a, парциальные давления N2O4 и NO2 равны соответственно


и


где Р - суммарное давление. Теперь


Если доля диссоциированного газа при 75° С равна 0,741 и суммарное давление 1 атм, то


Отметим, что при повышении суммарного давления степень диссоциации будет уменьшаться в соответствии с уравнением (7) и принципом Ле Шателье, согласно которому система стремится сохранить состояние, в котором она находится, в противовес любым внешним воздействиям. Приведем в качестве примера несколько изученных газофазных реакций: N2 + 3H2 2NH3 H2 + I2 2HI N2 + O2 2NO CO2 + H2 CO + H2O В последних трех случаях изменение давления в системе не повлияет на ход реакции, поскольку число молекул исходных соединений и продуктов одинаково. Однако в первом случае при повышении давления будет наблюдаться ускорение процесса - образование большего количества продукта.
Равновесие в гомогенной жидкой системе. Одним из типичных примеров обратимой реакции в гомогенной жидкой системе является реакция между уксусной кислотой и этиловым спиртом с образованием этилацетата и воды:

Константа равновесия KС этой реакции равна


Если а молей кислоты и b молей спирта в смеси с l молями этилацетата и m молями воды образуют раствор объемом v и если x молей кислоты и x молей спирта дают x молей этилацетата и x молей воды, то можно записать уравнение (8) в следующем виде:


Разные электролиты диссоциируют в полярных растворителях в разной степени (см. ЭЛЕКТРОЛИТЫ). Для определения степени диссоциации электролитов чаще всего применяют достаточно простой и точный метод, основанный на измерении их электропроводности. Согласно Аррениусу, степень диссоциации электролита равна

Где A - эквивалентная электропроводность (т.е. проводимость, соответствующая одному "молю" заряда) электролита, концентрацию которого хотят определить, L0 - эквивалентная электропроводность электролита при бесконечном разбавлении, когда он полностью диссоциирован. Зная концентрацию и степень диссоциации, можно определить константу ионизации (для кислот - константу протолиза) слабого электролита. Обычно ионизация или диссоциация подавляется при добавлении в среду избытка продукта диссоциации. Кислота, образующаяся при захвате протона данным основанием, называется кислотой, сопряженной с этим основанием; соответственно основание, образующееся при отдаче протона данной кислотой, называется основанием, сопряженным с этой кислотой. Представим протолиз (или ионизацию кислоты в воде) как взаимные превращения сопряженных кислот и оснований: HA + H2O H3O+ + A-где НА и А- - сопряженные кислота и основание, Н2О и Н3О+ - сопряженные основание и кислота. Константа равновесия процесса ионизации равна


Концентрация воды изменяется незначительно при растворении в ней малых количеств НА и может быть включена в константу. Тогда константа протолиза Kb равна


Подобным же образом можно получить выражения для константы равновесия протолиза основания. В качестве характерного примера можно привести протолиз слабого основания, аммиака, в воде:


где С - исходная концентрация аммиака, a - степень протолиза. При 25° С и концентрации аммиака 0,020м (моль на 1000 г воды) степень протолиза аммиака равна 0,030. Отсюда


Рассчитаем значение Kb, основываясь на активностях участвующих в процессе веществ. Активность а равна произведению концентрации С на коэффициент активности g. Коэффициент активности ионов в воде при 25° С можно рассчитать в рамках теории Дебая - Хюккеля с помощью эмпирического уравнения


где Zi - валентность ионов i, m - ионная сила, определяемая соотношением


где Сi - концентрация ионов i. В водном растворе аммиака концентрация ионов NH4+ равна концентрации гидроксильных ионов, а именно 0,030Ч0,020 = 0,00060 моль. Таким образом,

И

Отсюда получаем g = 0,972
Коэффициент активности для нейтральных молекул аммиака в разбавленном растворе может быть принят равным 1. Таким образом, эффективные концентрации NH4+ и ОН- одинаковы и равны 0,972*0,00060 = 0,00058, и мы получаем значение Kb, вычисленное через активности:

Эта величина Kb(а) является термодинамической константой протолиза аммиака в воде при 25° С и имеет большее значение в термодинамических приложениях, чем величина Kb, полученная исходя из значений концентраций.
Равновесие в гетерогенных системах. Если в системе имеется две или несколько фаз, то она называется гетерогенной. Так, одно или несколько реагирующих веществ или продуктов могут находиться в твердом или жидком состоянии, а остальные - в газообразном. Концентрации жидких или твердых веществ в равновесии не изменяются, потому по сравнению с гомогенной системой расчеты упрощаются. Давление пара и растворимость твердых и жидких веществ не зависят от их количества, являются постоянными при данной температуре величинами и включаются в константу равновесия. Рассмотрим реакцию CaCO3 (тв.) -> Для нее


и


поскольку при постоянной температуре и рСаО постоянны. В качестве других примеров можно рассмотреть диссоциацию гидросульфида аммония NH4HS на H2S и NH3 и карбамата аммония NH2COONH4 на СО2 и 2NH3. К гетерогенным процессам относятся распределение растворенного вещества между двумя несмешивающимися растворителями и растворение твердых веществ в жидкостях (см. РАСТВОРЫ) . Константа распределения растворенного вещества между двумя несмешивающимися растворителями равна

Где С2 и С1 - концентрации растворенного вещества в двух растворителях. Если в одной из фаз происходит ассоциация или диссоциация растворенного вещества, то это выражение модифицируется. Для растворения твердых веществ в жидкостях KC = Cнас
где Снас - концентрация твердого вещества в жидкости в состоянии насыщения при постоянной температуре. Зависимость константы равновесия от температуры. Обычно константа равновесия изменяется с изменением температуры. Если в ходе реакции выделяется тепло, то с повышением температуры реакция замедляется и K уменьшается. Напротив, когда тепло в ходе реакции поглощается, константа равновесия с повышением температуры увеличивается. Температурная зависимость константы равновесия выражается в виде


где DН - теплота химического процесса (т.е. теплота химической реакции, теплота растворения и т.д.). Интегрирование от Т1 до Т2 дает


Отсюда, зная значение K при двух температурах, можно найти DН. Или, если известны Kр либо KС при одной температуре и DН, можно определить Kр или KС при другой температуре.
Свободная энергия и равновесие. Предпринималось много попыток определения составляющих свободной энергии (энтальпии и энтропии) или ее самой из калориметрических данных, из данных по электродвижущей силе или статистическими методами с использованием спектроскопических данных (расчет статистических сумм). Изменение свободной энергии в ходе химической реакции является очень важной величиной, позволяющей определить, может ли протекать данная реакция в тех или иных условиях. Так, если при постоянных давлении и температуре изменение свободной энергии для данной химической реакции является большим по величине (і10 ккал/моль) и отрицательным по знаку, то реакция протекает самопроизвольно. Если изменение свободной энергии равно нулю, то имеет место равновесие, а если оно положительно, то для протекания реакции нужен подвод энергии извне. Зная изменение свободной энергии в ходе реакции для условий, когда реагенты и продукты находятся в стандартных состояниях, можно рассчитать константу равновесия реакции и получить информацию о том, при каких условиях получается максимальный выход.
Определение констант равновесия. Для определения констант равновесия используются физические и химические методы. В ходе измерений равновесие не должно нарушаться. Если это возможно, концентрации всех присутствующих в системе веществ следует определять исходя из одного или двух экспериментальных измерений. Следя за изменением давления или объема в ходе реакции, можно рассчитать состав системы в состоянии равновесия. Для определения концентрации одного или нескольких компонентов в равновесной смеси используют оптические методы (поглощение и преломление света), измеряют плотность и электропроводность. Можно использовать также химический анализ, если время анализа достаточно мало и равновесие не нарушается. Равновесную смесь "замораживают" (удалением катализатора, добавлением избытка одного из реагентов, быстрым охлаждением), чтобы предотвратить изменение ее состава в ходе анализа. Чтобы убедиться, что константа равновесия определена правильно, к равновесию нужно приближаться с обеих сторон или изменять концентрации реагентов в широком диапазоне. При этом должны получаться одинаковые значения констант равновесия. Иногда для определения констант равновесия используют методы измерения в потоке. Газообразные реагенты пропускают через реактор с катализатором при высокой температуре и быстро анализируют выходящие газы. Изменяя массовые скорости (расходы), определяют константу равновесия для таких условий, когда при дальнейшем уменьшении расхода состав выходящих газов не изменяется. Таким способом была определена константа равновесия реакции N2 + 3H2 2NH3
ЛИТЕРАТУРА
Эммануэль Н.М., Кнорре Д.Г. Курс химической кинетики. М., 1984 Пурмаль А.П. Химическая кинетика. М., 1993 Семиохин И.А., Страхов Б.В. Кинетика химических реакций. М., 1995

Энциклопедия Кольера. - Открытое общество . 2000 .

Химическая кинетика

Химическое равновесие

Химическая кинетика – раздел химии, который изучает скорость химической реакции и факторы влияющие на неё.

О принципиальной осуществимости процесса судят по значению изменения энергии Гиббса системы. Однако оно ничего не говорит о реальной возможности реакции в данных условиях, не даёт представления о скорости и механизме процесса.

Изучение скоростей реакций позволяет выяснить механизм сложных химических превращений. Это создаёт перспективу для управления химическим процессом, позволяет осуществлять математическое моделирование процессов.

Реакции могут быть:

1. гомогенными – протекают в одной среде (в газовой фазе); проходят во всём объёме;

2. гетерогенными – протекают не в одной среде (между веществами, находящимися в разных фазах); проходят на границе раздела.

Под скоростью химической реакции понимают число элементарных актов реакции, проходящих в единицу времени в единице объёма (для гомогенных реакций) и на единицу поверхности (для гетерогенных реакций).

Так как при реакции изменяется концентрация реагирующих веществ, то скорость обычно определяют как изменение концентрации реагентов в единицу времени и выражают в

. При этом нет необходимости следить за изменением концентрации всех веществ, входящих в реакцию, поскольку стехиометрический коэффициент в уравнении реакции устанавливает соотношение между концентрациями, т.е. при скорость накопления аммиака вдвое больше скорости расходования водорода.
, , т.к. не может быть отрицательной, поэтому ставят «–».

Скорость в интервале времени

истинная мгновенная скорость – 1‑ая производная концентрации по времени.

Скорость химических реакций зависит :

1. от природы реагирующих веществ;

2. от концентрации реагентов;

3. от катализатора;

4. от температуры;

5. от степени измельчения твёрдого вещества (гетерогенные реакции);

6. от среды (растворы);

7. от формы реактора (цепные реакции);

8. от освещения (фотохимические реакции).

Основной закон химической кинетики – закон действующих масс : скорость химической реакции пропорциональна произведению концентраций реагирующих веществ в реакции

: , – постоянная скорости химической реакции

Физический смысл

при .

Если в реакции участвуют не 2‑е частицы, а более

, то: ~ в степенях, равных стехиометрическим коэффициентам, т.е.: , где – показатель порядка реакции в целом (реакции первого, второго, третьего … порядков).

Число частиц, участвующих в этом акте реакции определяет молекулярность реакции :

мономолекулярная ( ) бимолекулярная ( ) тримолекулярная.

Больше 3‑х не бывает, т.к. столкновение более 3‑х частиц сразу – маловероятно.

Когда реакция идёт в несколько стадий, то общая

реакции = наиболее медленной стадии (лимитирующей стадии).

Зависимость скорости реакции от температуры определяется эмпирическим правилом Вант-Гоффа : при увеличении температуры на

, скорость химической реакции увеличивается в 2 – 4 раза: . ,
– температурный коэффициент скорости химической реакции .

Не всякое столкновение молекул сопровождается их взаимодействием. Большинство молекул отскакивают как упругие шарики. И только активные при столкновении взаимодействуют друг с другом. Активные молекулы обладают некоторой избыточной

но сравнению с неактивными молекулами, поэтому в активных молекулах связи между ними ослаблены.

Энергия для перевода молекулы в активное состояние – энергия активации

. Чем она меньше, тем больше частиц реагируют, тем больше скорость химической реакции.

Величина

зависит от природы реагирующих веществ. Она меньше диссоциации – наименее прочной связи в реагентах.

Изменение

в ходе реакции: выделяется (экзотермическая)

С увеличением температуры число активных молекул растёт, поэтому

Скорость химической реакции: зависимость от концентрации реагирующих веществ, температуры, действия катализатора Энергия активации. Химическое равновесие.

Химическая кинетика - наука о механизмах и скоростях химических реакций.

Скорость химической реакции

Скорость химической реакции равна изменению количества вещества, вступающего в реакцию или образующегося в результате реакции в единицу времени в единице реакционного пространства. Скорость реакции обозначается буквой V, обычно выражают в моль на литр (моль/л), а время в секундах или минутах.

Скорость химической реакции зависит:

1) от природы реагирующих веществ;

2) концентрации реагирующих веществ;

3) температуры;

4) присутствия катализатора.

Зависимость скорости реакции от концентрации реагирующих веществ

Количественно зависимость скорости реакции от концентрации реагирующих веществ выражается законом действующих масс: скорость реакции пропорциональна произведению молярных концентраций всех реагентов, в степенях, равных стехиометрическому коэффициенту при соответствующем реагенте уравнения реакции. В общем виде для гомогенной реакции:

аА + вВ = dD + fF

υ = k[A] a -[В] в или v = k С а А·С в в.

Для обозначения концентраций реагентов или продуктов реакции принято использовать букву «С» или квадратные скобки; СА, Св - концентрации вещества А и В, моль/л; [А], [В] – равновесные концентрации веществ А и В; а и в - стехиометрические коэффициенты перед веществами А и В в уравнении реакции; k -коэффициент пропорциональности, называемый константой скорости реакции, зависит от природы реагирующих веществ, температуры и наличия катализатора.

Например, выражение скорости реакции: 2СО(г) + O 2 (г) = 2СO 2 (г)

имеет вид: υ = k· 2 ·[О 2 ]

Для гетерогенных реакций типа: аА(г) + вВ(к) = сС(к)

выражение скорости реакции имеет вид: υ = kC a A или υ = k[A] a .

Зависимость скорости химической реакции от температуры

Скорость реакций увеличивается с ростом температуры. Причиной этому является возрастание энергии сталкивающихся частиц, вследствие чего повышается вероятность того, что при столкновении произойдёт химическое превращение. Определяется правилом Вант-Гоффа: при повышении температуры на 10° скорость большинства химических реакций возрастает в 2-4раза.

Математическое выражение правила Вант-Гоффа:

υ2/ υ1 = T/10 ( - коэффициент Вант-Гоффа)

где υ1 и υ2 - скорости реакции при температурах Т1 и Т2; γ - температурный коэффициент реакции, показывающий во сколько раз увеличивается скорость реакции при повышении температуры на 10°.

Энергия активации реакции Е А – это пороговая энергия. Если энергия сталкивающихся частиц меньше Е А, то при столкновении реакция не произойдет, если энергия превышает Е А, реакция произойдет.

Химическое превращение происходит только, когда возникают условия для перераспределения электронной плотности столкнувшихся частиц. Этот процесс протекает во времени и требует затрат энергии. Рассмотрим взаимодействие газообразных веществ А 2 и В 2:

А 2 (г)+ В 2 (г) = 2АВ (г)

Путь реакции можно охарактеризовать тремя последовательными состояниями системы:

А В А……В A - B

│ + │ → : : → +

А В А…....В A - B

начальное состояние переходное состояние конечное состояние

(исходные реагенты) (активированный комплекс) (продукты реакции)

В переходном состоянии происходит перегруппировка атомов, сопровождающаяся перераспределением электронной плотности. Энергию, необходимую для перехода веществ в состояние активированного комплекса, называют энергией активации Гиббса.

Она определяется соотношением

Поэтому аналогично запишем энергию активации Гиббса

∆G ≠ = ∆H ≠ - T∆S ≠ ,

где ∆H ≠ - энтальпия активации реакции; Т – температура; ∆S ≠ - энтропия активации реакции.

Образование активированного комплекса требует затраты энергии. Вероятность того, что при столкновении частиц образуется активированный комплекс и произойдет реакция, зависит от энергии сталкивающихся частиц. Реагируют только те из молекул, энергия которых для этого достаточна. Такие молекулы называются активными. Энергию, необходимую для перехода веществ в состояние активированного комплекса, называется энтальпией активации ∆H ≠ .

Решение типовых задач.

Пример 1. Как изменится скорость взаимодействия исходных веществ при повышении температуры с 20 до 66°С, если температурный коэффициент реакции равен 2,5?

Решение. По условию задачи изменение температуры Т2 – Т1 == 66 - 20 = 46°. Следовательно, в результате повышения температуры на 46° отношение v 2 /v 1 = T/10 = 4,6 lg2,5 = 4,6 0,398 = 1,831, тогда υ66/ υ20 = 67,7. Скорость реакции возрастает в 67,7 раз.

Зависимость скорости реакции от катализатора

В присутствии катализатора происходит изменение скорости химической реакции. Скорость в присутствии одних катализаторов увеличивается, в присутствии других замедляется.

Катализатор – вещество, участвующее в реакции и изменяющее её скорость, но остающееся неизменным после того, как химическая реакция заканчивается. Катализатор, замедляющий химическую реакцию, называют ингибитором. Биологические катализаторы белковой природы называют ферментами.

Механизм действия катализаторов связан с тем, что они образуют промежуточные соединения с исходными веществами и тем самым изменяют путь реакции, причем новый путь реакции характеризуется меньшей высотой энергетического барьера, то есть меньшей энергией активации по сравнению с некатализируемой реакцией.

Химическое равновесие

Реакции, идущие одновременно в двух противоположных, направлениях (прямом и обратном), называют обратимыми. Необратимых реакций, вообще говоря, не бывает. Просто в определенных условиях некоторые реакции можно довести практически до конца, например, если удалять продукты из сферы реакции - выпадение осадка, выделение газа, образование малодиссоциированных продуктов и т. д. Для любой обратимой гомогенной реакции:

аА + вВ ↔ сС -dD

в начальный момент времени, согласно закону действующих масс, скорость прямой реакции: υ= k ·C a A-C b B , имеет максимальное значение, а скорость обратной реакции υ = k -C c С-С d D равна нулю. Со временем концентрация исходных веществ - реагентов (А и В) уменьшается, а продуктов реакции (С и D) возрастает и, следовательно, уменьшается скорость прямой и возрастает скорость обратной реакции. Наступает момент, когда обе скорости становятся равным, что соответствует равновесному состоянию системы.

Концентрации реагентов и продуктов реакции, установившиеся к моменту равновесии, называются равновесными [А], [В], [С], [D], они остаются постоянными до нарушения химического равновесия. Равновесное состояние химической системы характеризуется по закону действующих масс константой равновесия (Кр), для реакции

aA + bB « dD + fF.

Это выражение позволяет рассчитать Кp по известным равновесным концентрациям всех веществ гомогенной реакции или концентрацию отдельного из веществ по известным концентрациям остальных веществ и К Р. Для одной и той же температуры отношение произведений равновесных концентраций (в степенях их стехиометрических коэффициентов) веществ в правой и левой частях уравнения химической реакции представляет постоянную величину. Константа равновесия показывает глубину протекания процесса. Если К>>1, процесс сильно сдвинут в сторону получения продуктов реакции. Если К<<1, наоборот, процесс сдвинут влево и практически не идет. К=1 - равновесие установилось.

При протекании реакции в прямом направлении до состояния равновесия происходит уменьшение концентрации реагентов на величины ΔС А и ΔС В и увеличение концентраций продуктов на величины ΔС С и ΔС D , определяемые выражениями для реагентов:

ΔС А = С 0(А) - [А], ΔС в = С 0(в) - [В], ΔС с = С 0(С) + [С] = 0 + [С] =[С], ΔС D = С 0(D) + [D] = 0 + [D] =[D],

где С 0(А) , С 0,(B) , С 0,(C) , С 0,(D) - исходные концентрации реагентов и продуктов реакции.

Решение задачи

Пример 1 . При некоторой температуре константа равновесия реакции: Н 2 (г) + I 2 (г) ↔ 2HI (г) равна 1. Определите состав равновесной реакционной смеси, если для реакции были взяты 1 моль/л Н 2 и 2 моль/л I 2 .

Решение. Задача сводится к определению равновесных концентраций реагентов и продуктов реакции через константу равновесия. Равновесные концентрации представляют собой концентрации реагентов, не вступивших в реакцию к моменту установления равновесия, и концентрации продуктов реакции, образовавшихся к моменту равновесия. Эти концентрации можно рассчитать из уравнения реакции:

Н 2 (г) +I 2 (г) ↔2HI (г).

Начальная концентрация: 1 2 0

К моменту равновесия:

1) прореагировало, ∆С х х

2) осталось 1-х 2-х

3) образовалось 2х

Таким образом, равновесные концентрации исходных веществ и продуктов реакции составляют:

C H2 -x = (l-x),

С I 2 -х = (2-х),

2х, так как из уравнения видно, что HI образуется в 2 раза больше, чем реагирует Н 2 или I 2 . С 0,(H2) и С 0, (I 2) – исходные концентрации Н 2 и I 2 . По достижении равновесия состав реакционной смеси был следующий:

[Н 2 ] = (1 - 0,45) = 0,55 моль/л,

= (2 - 0,45) = 1,55 моль/л,

2·0,45 = 0,9 моль/л.

Смещение химического равновесия

Каждое химическое равновесие устанавливается при определенном значении трех параметров, которые его характеризуют: 1) концентрация реагирующих веществ; 2) температура; 3) давление (для газов). Изменение одного из этих параметров приводит к нарушению равновесия: (υ≠ υ). Если υ> υ, то равновесие смещается вправо, в направлении образования продуктов реакции, что обозначают (→). Если υ< υ, то равновесие смещается влево (←), в направлении образования исходных веществ.

Направление смещения равновесия определяется принципом Ле-Шателье: если на систему, находящуюся в состоянии равновесия, оказать внешнее воздействие, то равновесие сместиться в том направлении, которое ослабит внешнее воздействие.

1. Если внешнее воздействие на систему проявляется в уменьшении концентрации одного из веществ, участвующих в реакции, то это смещает равновесие в сторону его образования. При увеличении концентрации одного из веществ равновесие системы смещается в сторону той реакции, которая ее уменьшает.

2. Повышение температуры смещает равновесие в сторону эндотермической реакции (∆Н > 0), а понижение - в сторону экзотермической (∆Н < 0).

3. Изменение давления оказывает влияние на равновесие в том случае, если в реакции участвует хотя бы одно газообразное вещество и число моль исходных газообразных веществ и газообразных продуктов реакции не одинаково. При уменьшении или увеличении давления равновесие смешается соответственно в сторону образования большего или меньшего числа моль газа.

Пример 1 . При каких условиях равновесие реакции:

4Fe (к) + 3О 2 (г) ↔2Fе 2 О 3 (к), ΔН 0 r = -1644,4 кДж

будет смещаться в сторону разложения оксида?

Решение . 1. Смещение равновесия в сторону разложения оксида означает смещение его влево, т.е. увеличение скорости обратной реакции, которая является эндотермической. Прямая реакция по условию экзотермическая (ΔН 0 r < О). Такое смещение, согласно принципу Ле-Шателье, достигается повышением температуры.

2. Приведенная обратимая реакция является гетерогенной. В ней участвует одно газообразное вещество - кислород, являющееся исходным. Для смещения равновесия в направлении образования О 2 (←) его концентрацию необходимо уменьшить, что равнозначно понижению давления в системе.

Лекция 8. Растворы

Типы растворов, термодинамика растворения. Растворимость. Растворение газов в жидкостях. Закон Генри. Пересыщенные растворы. Закон Рауля. Коллигативные свойства растворов. Электролиты. Теория электролитической диссоциации Аррениуса. Степень электролитической диссоциации. Особенности растворов электролитов. Степень и константа диссоциации. Слабые электролиты. Ионное произведение воды. Водородный показатель. Произведение растворимости. Гидролиз солей. Различные случаи гидролиза. Степень и константа гидролиза. Сдвиг гидролиза.

Молекулярным или истинным раствором называется гомогенная система, состоящая из двух и более компонентов. От молекулярных растворов следует отличать коллоидные растворы: суспензии, эмульсии, аэрозоли. Коллоидные от молекулярных растворов отличаются тем, что они представляют собой многокомпонентные гетерогенные системы. Примерами молекулярных растворов являются водный раствор хлористого натрия, воздух, сплав серебра с золотом. Уже из приведенных примеров видно, что типы растворов могут быть разные.

Растворы могут находиться в трех агрегатных состояниях: газообразном, жидком, твёрдом. Поэтому различают жидкие растворы, газовые растворы, твердые растворы. Раствор состоит из растворенного вещества и растворителя. Растворителем считают тот компонент, который находится в том же агрегатном состоянии, что и сам раствор. Если все компоненты находятся в одинаковом состоянии, то растворителем считается тот компонент, который находится в большем количестве.

Раствор, находящийся в равновесии с растворяющимся веществом, называется насыщенным раствором. В таких растворах при заданной температуре не может раствориться большее количество растворенного вещества. Насыщенный раствор находится в динамическом равновесии с нерастворимой частью растворяемого вещества.

Растворимостью называется способность вещества растворяться в том или ином растворителе. Мерой растворимости вещества служит его содержание в насыщенном растворе при определенных условиях. Численно растворимость выражается теми же способами, что и состав. Например, процентное отношение массы растворенного вещества к массе насыщенного раствора, или количество растворенного вещества, содержащегося в 1 литре насыщенного раствора. Иногда для характеристики растворимости используют коэффициент растворимости. Коэффициентом растворимости называется число единиц массы безводного вещества, насыщающего при данных условиях 100 единиц массы растворителя.

Обычно вещества, состоящие из полярных молекул, и вещества с ионным типом связи лучше растворяются в полярных растворителях (вода, спирты, жидкий аммиак), а неполярные вещества – в неполярных растворителях (бензол, сероуглерод). Это подтверждает эмпирическое правило «подобное растворяется в подобном».

Растворимость зависит от температуры. Для некоторых веществ такая зависимость имеет слабый характер. Например, растворимость нитратов калия, свинца, серебра (KNO 3 , Pb(NO 3) 2 , AgNO 3) в воде резко увеличивается с повышением температуры. Растворимость хлорида натрия (NaCl) в воде лишь незначительно изменяется по мере повышения температуры.

При растворении твердых тел в воде объём системы обычно изменяется незначительно. Поэтому растворимость твердых тел в воде практически не зависит от давления.

Жидкости могут растворяться друг в друге. Некоторые из них, например, спирт – вода, неограниченно растворимы, то есть смешиваются друг с другом в любых пропорциях. Есть жидкости, которые взаимно растворимы лишь до определенного предела, их называют частично смешивающимися. Если взболтать диэтиловый эфир с водой, то образуются два слоя: верхний представляет собой насыщенный раствор воды в эфире, а нижний – насыщенный раствор эфира в воде. Для таких систем с повышением температуры взаимная растворимость жидкостей увеличивается до тех пор, пока не будет достигнута температура, при которой обе жидкости смешиваются в любых пропорциях. Температура, при которой ограниченная взаимная растворимость жидкостей переходит в неограниченную, называется критической температурой растворения. Так, при температуре ниже 66,4 0 С фенол ограниченно растворим в воде, а вода ограниченно растворима в феноле. Для системы вода – фенол температура 66,4 0 С является критической температурой растворения, так как начиная с этой температуры и выше, обе жидкости неограниченно растворимы друг в друге.

Взаимное растворение жидкостей обычно не сопровождается значительными изменениями объёма, поэтому мало зависит от давления. Лишь при очень высоких давлениях порядка тысяч атмосфер взаимная растворимость жидкостей существенно возрастает.

Встречаются жидкости, которые полностью нерастворимы друг в друге, их называют несмешивающимися жидкостями. Если обе жидкости нерастворимы одна в другой, то при смешивании в любых пропорциях образуется два отдельных слоя. Примерами таких жидкостей являются следующие: ртуть – вода, дисульфид углерода – вода, хлорбензол – вода, фениламин – вода.

Если в систему, состоящую из двух несмешивающихся жидкостей, ввести третье вещство, способное растворяться в каждой из этих жидкостей, то растворенное вещество будет распределяться между обеими жидкостями, пропорционально своей растворимости в каждой их них. Для таких систем выполняется закон распределения согласно которому: вещество, способное растворяться в двух несмешивающихся растворителях, распределяется между ними так, что отношение его концентраций в этих растворителях при постоянной температуре остается постоянным, независимо от общего количества растворенного вещества

К(В) = с 1В /с 2В,

где с 1В и с 2В – концентрации растворенного вещества в первом и втором растворителях, К(В) – константа распределения вещества В между двумя несмешивающимися жидкостями.

Растворение газов в воде представляет собой экзотермический процесс. Поэтому растворимость газов с повышением температуры уменьшается. При растворении газа в жидкости устанавливается равновесие

Газ + Жидкость ↔ Насыщенный раствор

При этом объём системы существенно уменьшается. Следовательно, повышение давления должно приводить к смещению равновесия вправо, то есть к увеличению растворимости газа.

Генри сформулировал данную закономерность в более общем виде: парциальное давление пара растворенного вещества над раствором пропорционально молярной доле растворенного вещества в растворе.

Растворимость большинства веществ уменьшается с понижением температуры. Поэтому при охлаждении горячих насыщенных растворов избыток растворенного вещества выделяется. Однако если производить охлаждение осторожно и медленно, то выделения растворенного вещества из раствора не будет. В этом случае получится раствор, содержащий значительно больше растворенного вещества, чем его требуется для насыщения при данной температуре. Такие растворы называются пересыщенными . Такие растворы в спокойном состоянии могут оставаться годами без изменения. Но если в раствор бросить кристаллик того вещества, которое в нем растворено, то сразу же вокруг него начинают расти другие кристаллы и через короткое время весь избыток растворенного вещества выкристаллизовывается. Кристаллизация иногда начинается от простого сотрясения раствора. Очень легко образуют пересыщенные растворы глауберова соль (Na 2 SO 4 ∙10H 2 O), тиосульфат натрия (Na 2 S 2 O 3 ∙5H 2 O).

Закон Рауля. Коллигативные свойства растворов.

Коллигативными свойствами растворов называются такие их свойства, которые зависят только от концентрации частиц растворенного вещества, но не от его химического состава. Наиболее часто встречаются следующие четыре коллигативных свойства растворов:

1) понижение давления пара;

2) повышение температуры кипения;

3) понижение температуры замерзания;

4) осмотическое давление.

Все эти четыре свойства относятся к растворам, содержащим нелетучие растворимые вещества, то есть такие растворимые вещества, давление пара которых пренебрежимо мало.

При данной температуре давление насыщенного пара над жидкостью – есть величина постоянная. При растворении какого-либо вещества в данной жидкости давление насыщенного пара этой жидкости над раствором понижается. Давление насыщенного пара растворителя над раствором всегда ниже, чем над чистым растворителем при той же температуре. Разность этих давлений получила название понижение пара над раствором .

В 1887 г. французский физико-химик Рауль установил закон, связывающий понижение давления пара над разбавленными растворами неэлектролитов с увеличением концентрации растворенного вещества. Он получил название закона Рауля: относительное понижение давления насыщенного пара растворителя над раствором равно молярной доле растворенного вещества

(Р 0 – Р)/Р 0 = Х

Следствием понижения давления насыщенного пара растворителя над раствором является повышение его температуры кипения по сравнению с чистым растворителем и понижение температуры его замерзания.

Всякая жидкость начинает кипеть при той же температуре, при которой давление её насыщенного пара достигает величины внешнего давления. Вода при давлении 101 кПА начинает кипеть при температуре 100 0 С потому, что давление насыщенного пара равно 101 кПА. Поскольку при данной температуре давление насыщенного водяного пара над раствором будет ниже, чем над чистым растворителем, то при 100 0 С раствор не закипает. Температура кипения водного раствора больше 100 0 С, причем тем больше, чем выше концентрация раствора.

При замерзании жидкостей кристаллизация начинается при той температуре, при которой давление насыщенного пара над жидкой фазой становится равным давлению насыщенного пара над твердой фазой. Вода замерзает при 0 0 С потому, что при этой температуре давление насыщенного пара воды над жидкостью и над льдом одинаково и равно 0,61 кПА.

Для разбавленных растворов повышение температуры кипения и понижение температуры замерзания не зависит от природы растворенного вещества и прямо пропорционально количеству вещества n:

Dt зам. = К к ×С m ; Dt кип. =К э ×C m ,

где Dt зам. и Dt кип. – соответственно понижение температуры замерзания и повышение температуры кипения раствора находят по формуле

Dt зам = Т зам. р-ля – Т зам. р-ра; Dt кип = Т кип. р-ра – Т кип. р-ля;

К к и К э – соответственно криоскопическая и эбулиоскопическая константы растворителя; С m – моляльная концентрация раствора (моль/кг) может быть найдена по формуле

,

где m 1 – масса растворенного вещества, г; М – его молярная масса, г/моль; m 2 – масса растворителя, г.

Осмос – это самопроизвольный переход растворителя через полупроницаемую мембрану из разбавленного раствора или чистого растворителя в концентрированный раствор. Мембрана, пропускающая частицы растворителя, но не пропускающая частицы растворенного вещества, называется полупроницаемой мембраной. Примером такой мембраны является бычий пузырь. Полупроницаемая мембрана пропускает частицы растворителя в обоих направлениях. Но с той стороны мембраны, где концентрация раствора выше, концентрация растворителя ниже. Поэтому происходит результирующий переход растворителя в концентрированный раствор. Это приводит к установлению разности давлений по обе стороны мембраны, которое называется осмотическим давлением.

Осмотическое давление является коллигативным свойством, так как оно зависит только от концентрации растворенных частиц и не зависит от их химического состава. Для осмотического давления выполняется уравнение Вант-Гоффа.

,

где n – количество растворенного вещества, моль; V – объем раствора, м 3 ; R – газовая постоянная, равная 8,31 Дж/(моль·К); Т – температура, К; m – масса растворенного вещества, г; M – его молярная масса, г/моль; См - молярная концентрация, моль/л

Осмотическое давление играет важную роль в биологических системах. В организме животных некоторые клетки, например, эритроциты, содержат солевой раствор. Данные клетки окружены плазматической мембраной. В водной среде эритроциты подвергаются осмосу, набухают и лопаются. Однако, если они попадают в более концентрированный раствор соли, клетки сморщиваются.

Если давление, приложенное к концентрированному раствору, превышает осмотическое, то растворитель переходит из концентрированного раствора через мембрану в разбавленный раствор. Этот процесс называется обратный осмос. Его используют в промышленности для получения питьевой воды из морской.

Растворы электролитов

Вещества, которые распадаются на ионы и проводят электрический ток, называются электролитами. Электролит проводит электрический ток в результате того, что направленное перемещение его ионов создает поток электрических зарядов. Таким образом, пропускание электрического тока через электролит сопровождается переносом вещества.

Электролитами являются кислоты, основания и соли, находящиеся в расплавленном состоянии или в водном растворе.

Способность электролитов проводить электрический ток называется электролитической проводимостью. Она отличается от электронной проводимости металлов или других проводников электрического тока. В веществах с электронной проводимостью поток заряда обусловлен движением электронов. Поэтому пропускание электрического тока через проводники с электронной проводимостью не сопровождается переносом вещества. Электролиты – это проводники второго рода. В растворе или расплаве они распадаются на ионы, благодаря чему и протекает электрический ток.

Распад электролитов на ионы при растворении их в воде называется электролитической диссоциацией.

Для объяснения особенностей водных растворов электролитов шведским химиком С. Аррениусом в 1887 г. была предложена теория электролитической диссоциации . Основные положения теории следующие:

1. Электролиты при растворении в воде распадаются на ионы – положительные и отрицательные. Ионы находятся в более устойчивых электронных состояниях, чем атомы. Среди таких ионов встречаются простые, например, Na + , Mg 2+ , Al 3+ и сложные, состоящие из нескольких атомов, например, NO 3 - , SO 4 2- , PO 4 3- . В растворе ионы беспорядочно передвигаются в различных направлениях.

2. Под действием электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду, отрицательно заряженные – к аноду. Первые называются катионами, а вторые анионами.

3. Диссоциация – обратимый процесс. Одновременно с распадом молекул на ионы протекает обратный процесс – соединения ионов в молекулу.

Поэтому в уравнениях электролитической диссоциации стоит не знак равенства, а знак обратимости ↔.

Под степенью диссоциации электролита понимается отношение числа диссоциированных на ионы молекул n к общему числу молекул растворенного электролита N , то есть

В зависимости от степени диссоциации различают слабые и сильные электролиты. Сильные электролиты при больших концентрациях диссоциированы более чем на 1/2. Степень диссоциации слабых электролитов очень мала по сравнению с 1. Сильные электролиты – это большинство раст­воримых солей (кроме СиС1 2 , Рb(СН 3 СОО) 2 , Fe(CNS) 3), щелочи и сильные кислоты (HCI, НВг, НI, НNO 3 , Н2SO4, НClO 4 , НМnO 4). Слабые электролиты – это большинство органических кислот, неорганические слабые кислоты и слабые основания, некоторые нейтральные соли CdCl 2 , Fe(CH 3 COO) 3 . Особенно слабыми электролитами являются вода, сероводород, синильная и борная кислоты.

Степень диссоциации зависит от природы электролита и растворителя, а также от концентрации электролита. С уменьшением концентрации степень диссоциации увеличивается, а при сильном разведении раствора, а →1, и различия между сильно и слабодиссоциирующими электролитами сглаживаются.

Ионное произведение.

Электропроводность воды объясняется тем, что вода в очень малой степени диссоциирует, образуя ионы водорода и гидроксид-ионны:

Этот процесс равновесен и, как любой равновесный процесс, его можно охарактеризовать константой равновесия, которая является константой диссоциации :

При комнатной температуре на ионы распадается лишь одна из 108 молекул воды.

В разбавленных растворах концентрация воды изменяется очень мало и ее можно считать постоянной, тогда

Так как – константа, то вносят в К D и обозначают К W :

Эта величина называется ионным произведением воды и представляет собой постоянную величину при данной температуре.

В чистой воде при комнатной температуре концентрация ионов водорода и гидроксид-ионов равны между собой и равны 10 –7 моль/л. Следовательно:

Константа равновесия К W зависит от температуры и не зависит от концентрации катионов Н + и анионов ОН – .

Если в воду добавить кислоту, то концентрация катионов водорода увеличится, равновесие сместится влево, а концентрация гидроксид-ионов уменьшится так, что ионное произведение воды останется неизменным.

Таким образом, в водных растворах, при постоянной температуре, концентрация катионов водорода и гидроксид-ионов связаны между собой. При расчетах для водных растворов сильных электролитов используют не концентрации, а активности:

Активность иона а i выражается в виде произведения концентрации иона с i на его коэффициент активности i:

а i = i с i

Экспериментально определить активности катиона а + и аниона а - невозможно, так как они не существуют по раздельности. Поэтому вводится понятие средней ионной активности а . Для электролита, образующего n + катионов и n - анионов

a ± = (a + n+ ∙a - n-) 1/n

где n = n + + n - .

Аналогично определяется средний ионный коэффициент активности γ ±

γ ± = (γ + n + ∙γ - n -) 1/ n

Для характеристики кислотности (щелочности) среды введен специальный параметр – водородный показатель или рН. Водородным показателем или рН называют взятый с обратным знаком десятичный логарифм концентрации водородных ионов в растворе:

Водородный показатель определяет характер реакции раствора. Например, при 295К она нейтральна и рН=7 (концентрация ионов водорода равна [Н + ]=10 –7 моль/л). При рН<7 (концентрация ионов водорода [Н + ] >10 –7 моль/л) реакция раствора кислая, при рН>7 (концентрация ионов водорода [Н + ] <10 –7 моль/л) – щелочная. С изменением температуры величина ионного произведения воды К W изменяется.

Величина рН может служить критерием силы кислоты или основания. В ряду кислот будет сильной та, у которой при одинаковой молярной концентрации активность ионов Н + выше (рН ниже). Для оснований подобная зависимость носит обратный характер.

Произведение растворимости.

В насыщенном растворе электролита произведение концентраций его ионов есть величина постоянная при данной температуре. Данная величина количественно характеризует способность электролита растворяться ее называют произведением растворимости

Произведение растворимости зависит от природы растворенного вещества и растворителя, а также от температуры и не зависит от активности ионов малорастворимого электролита в растворе.

Произведение растворимости для большинства электролитов рассчитано и содержится в таблицах. Зная произведение растворимости, можно вычислить, выпадает ли в данных условиях вещество в осадок. Условием образования осадка малорастворимого электролита является превышение произведения активностей ионов этого электролита в растворе над табличной величиной произведения растворимости.

Гидролиз солей

Гидролиз соли – это обменное взаимодействие ионов соли с молекулами воды, приводящее к увеличению кислотности или щелочности раствора и образованию слабодиссоциируемых соединений. Сущность реакций гидролиза состоит во взаимодействии ионов соли с ионами водыс образованием слабых электролитов. В процессе гидролиза один из ионов воды связывается в слабый электролит, а другой, как правило, накапливается в растворе. Тот ион, который накапливается в растворе, определяет реакцию среды. Если накапливаются ионы Н + , то среда будет кислой, если группы ОН - – щелочной. При образовании одинаковых по си­ле электролитов среда может быть и нейтральной.

Уравнения гидролиза пишутся аналогично другим ионным уравнениям: малодиссоциированные (в том числе и вода) и малорастворимые, а также газообразные вещества пишутся в виде молекул, сильные электролиты записываются в виде ионов. Уравнения гидролиза солей многоосновных кислот и многокислотных оснований записываются по ступеням, аналогично ступенчатой диссоциации.

Различают четыре случая взаимодействия соли и воды.

1. Соли, образуемые сильной кислотой и слабым основанием.

Соли этого типа при растворении в воде образуют кислый раствор. Примером может служить хлорид аммония NH 4 Cl. Уравнение реакции гидролиза данной соли имеет вид

NH 4 Cl + H 2 O ↔ NH 4 OH + HCl .

В ионной форме уравнение реакции гидролиза имеет вид

NH 4 + + H 2 O ↔ NH 4 OH + H + .

Вследствие связывания ионов ОН - ионами аммония в слабодиссоциирующие молекулы NH 4 OH, в растворе появляется избыток водородных ионов и раствор становится кислым.

2. Соль образована слабой кислотой и сильным основанием.

Соли этого типа при растворении в воде образуют щелочной раствор. При гидролизе соли, образованной слабой кислотой и сильным основанием, образуется слабая кислота и избыток ионов гидроксила ОН - . Примером может служить гидролиз цианида калия, уравнение реакции имеет вид

KCN + H 2 O ↔ HCN + KOH

или в ионной форме

Задача 1. Дайте определение понятию скорость химической реакции. Опишите количественно (где это можно), как влия­ют на скорость реакции внешние условия (концентрация, тем­пература, давление). Рассчитайте, во сколько раз изменится скорость реакции Н 2 +С1 2 = 2НС1 при увеличении давления в 2 раза;

Решение.

Скоростью химической реакции u называют число элементарных актов взаимодействия, в единицу времени, в единице объема для гомогенных реакций или на единице поверхности раздела фаз для гетерогенных реакций. Среднюю выражают изменением количества вещества n израсходованного или полученного вещества в единице объема V за единицу времени t. Концентрацию выражают в моль/л, а время в минутах, секундах или часах.

υ = ± dC/dt,

где C – концентрация, моль/л

Единица измерения скорости реакции моль/л·с

Если в некоторые моменты времени t 1 и t 2 концентрации одного из исходных веществ равна с 1 и с 2 , то за промежуток времени Δt = t 2 – t 1 , Δc = c 2 – c 1

Если вещество расходуется, то ставим знак «-», если накапливается – «+»

Скорость химической реакции зависит от природы реагирующих веществ, концентрации, температуры, присутствия катализаторов, давления (с участием газов), среды (в растворах), интенсивности света (фотохимические реакции).

Зависимость скорости реакции от природы реагирующих веществ . Каждому химическому процессу присуще определенное значение энергии активации Е а. Причем, скорость реакции. тем больше, чем меньше энергия активации.

Скорость зависит от прочности химических связей в исходных веществах. Если эти связи прочные, то Е а велика, например N 2 + 3H 2 = 2NH 3 , то скорость взаимодействия мала. Если Е а равна нулю, то реакция протекает практически мгновенно, например:

HCl (раствор) + NaOH (раствор) = NaCl (раствор) + H 2 O.

Решение.

Fe 2 O 3 (т) + 3CO (г) = 2Fe (т) + 3CO 2 (г)

3 моля СО 2 образуется, если в реакцию вступают 3 моля СО,

2 молей СО 2 — х

х = 2 моль, ⇒ исходная концентрация исх = pавн + 2 моль = 1 + 2 = 3 моль.

Задача 3.Температурный коэффициент реакции равен 2,5. Как изменится ее скорость при охлаждении реакционной смеси от изменения температуры от 50 °С до 30 °С?

Задача 4. Рассчитайте скорость реакции между растворами хлорида калия и нитрата серебра, концентрации которых составляют соответственно 0,2 и 0,3 моль/л, а k=1,5∙10 -3 л∙моль -1 ∙с -1

Решение.

AgNO 3 + KCl = AgCl↓ + K NO 3

v = k··

v = 1,5∙10 -3 · 0,2 · 0,3 = 9·10 -5 моль/л·с

Таким образом скорость реакции равна v = 9·10 -5 моль/л·с

Задача 5. Как следует изменить концентрацию кислорода, чтобы скорость гомогенной элементарной реакции: 2 NО (г) +O 2(г) → 2 NО 2(г) не изменилась при уменьшении концентрации оксида азота (II) в 2 раза?

Решение .

2 NО (г) +O 2(г) → 2 NО 2(г)

Скорость прямой реакции равна:

υ 1 = k· 2 ·

При уменьшении концентрации NО в 2 раза скорость прямой реакции станет равной:

υ 2 = k· 2 · = 1/4·k· 2 ·

т.е. скорость реакции уменьшится в 4 раза:

υ 2 /υ 1 = 1/4·k· 2 · / k· 2 · = 4

Чтобы скорость реакции не изменилась концентрацию кислорода надо увеличить в 4 раза.

При условии, что υ 1 = υ 2

1/4·k· 2 ·х = k· 2 ·

Задача 6. При увеличении температуры с 30 до 45 о С скорость гомогенной реакции повысилась в 20 раз. Чему равна энергия активации реакции?
Решение.
Применяя , получим:
ln 20 = E a /8,31 · (1/303 – 1/318),
отсюда

E a = 160250 Дж = 160,25 кДж

Задача 7. Константа скорости реакции омыления уксусноэтилового эфира: СН 3 СООС 2 Н 5(р-р) + КОН (р-р) →СН 3 СООК (р-р) +С 2 Н 5 ОН (р-р) равна 0,1 л/моль∙мин. Начальная концентрация уксусноэтилового эфира была равна 0,01 моль/л, а щелочи – 0,05 моль/л. Вычислите начальную скорость реакции и в тот момент, когда концентрация эфира станет равной 0,008 моль/л.

Решение.

СН 3 СООС 2 Н 5(р-р) + КОН (р-р) →СН 3 СООК (р-р) +С 2 Н 5 ОН (р-р)

Скорость прямой реакции равна:

υ нач = k·[СН 3 СООС 2 Н 5 ]·[КОН]

υ нач = 0,1·0,01·0,05 = 5·10 -5 моль/л·мин

В тот момент, когда концентрация эфира станет равной 0,008 моль/л, его расход составит

[СН 3 СООС 2 Н 5 ] расход = 0,01 – 0,008 = 0,002 моль/л

Значит, в этот момент щелочи также израсходовалось [КОН] расход = 0,002 моль/л и ее концентрация станет равной

[КОН] кон = 0,05 – 0,002 = 0,048 моль/л

Вычислим скорость реакции в тот момент, когда концентрация эфира станет равной 0,008 моль/л, а щелочи 0,048 моль/л

υ кон = 0,1·0,008·0,048 = 3,84·10 -5 моль/л·мин

Задача 8. Как следует изменить объем реакционной смеси системы:
8NH 3(г) + 3Br 2(ж) →6NH 4 Br (к) + N 2(г) , чтобы скорость реакции уменьшилась в 60 раз?

Решение.

Чтобы уменьшить скорость реакции необходимо увеличить объем системы, т.е. уменьшить давление и, тем самым, уменьшить концентрацию газообразного компонента — NH 3 . Концентрация Br 2 при этом останется постоянной.

Начальная скорость прямой реакции была равна:

υ 1 = k· 8 ·

при увеличении концентрации аммиака скорость прямой реакции стала равной:

υ 2 = k· 8 · = k·x 8 · 8 ·

υ 2/ υ 1 = k·x 8 · 8 ·/k· 8 · = 60

После сокращения всех постоянных, получаем

Таким образом, чтобы уменьшить скорость реакции в 60 раз, надо увеличить объем в 1,66 раз.

Задача 9. Как повлияет на выход хлора в системе:
4HCl (г) +O 2(г) ↔2Cl 2(г) + 2H 2 О (ж) ; ΔН о 298 =−202,4кДж
а) повышение температуры; b) уменьшение общего объема смеси; c) уменьшение концентрации кислорода; d) введение катализатора?

Решение.

4HCl (г) +O 2(г) ↔2Cl 2(г) + 2H 2 О (ж) ; ΔН о 298 =−202,4кДж

  1. ΔН о 298 ˂ 0, следовательно, реакция экзотермическая, поэтому, согласно принципу Ле-Шателье, при повышении температуры равновесие сместится в сторону образования исходных веществ (влево), т.е. выход хлора уменьшится.
  2. При уменьшении давления, равновесие смещается в сторону реакции, идущей с увеличением числа молекул газообразных веществ. В данном случае в равновесие смещается сторону образования исходных веществ (влево), т.е. выход хлора также уменьшится.
  3. Уменьшение концентрации кислорода также будет способствовать смещению равновесия влево и уменьшению выхода хлора.
  4. Внесение катализатора в систему приводит к увеличению скорости как прямой, так и обратной реакций. При этом, изменяется скорость достижения состояния равновесия, но при этом константа равновесия не меняется и смещения равновесия не происходит. Выход хлора останется неизменным.

Задача 10. В системе: PCl 5 ↔ PCl 3 + Cl 2
равновесие при 500 о С установилось, когда исходная концентрация PCl 5 , равная 1 моль/л, уменьшилась до 0,46 моль/л. Найдите значение константы равновесия при указанной температуре.

Решение.

PCl 5 ↔ PCl 3 + Cl 2

Запишем выражение для константы равновесия:

К = · ̸

Найдем количество PCl 5, которое расходуется на образование PCl 3 и Cl 2 и их равновесные концентрации.

Расход = 1 – 0,46 = 0,54 моль/л

Из уравнения реакции:

Из 1 моль PCl 5 образуется 1 моль PCl 3

Из 0,54 моль PCl 5 образуется x моль PCl 3

x = 0,54 моль

Аналогично, из 1 моль PCl 5 образуется 1 моль Cl 2

из 0,54 моль PCl 5 образуется у моль Cl 2

у = 0,54 моль

К = 0,54·0,54/0,46 = 0,63.

Задача 11. Константа равновесия реакции: СОСl 2(г) ↔ СО (г) +С1 2(г) равна 0,02. Исходная концентрация СОCl 2 составила 1,3 моль/л. Рассчитайте равновесную концентрацию Сl 2 . Какую исходную концентрацию СОCl 2 следует взять, чтобы увеличить выход хлора в 3 раза?

Решение.

СОСl 2(г) ↔ СО (г) +С1 2(г)

Запишем выражение для константы равновесия :

К = [СО]· ̸ [СОСl 2 ]

Пусть [СО] равн = равн = х, тогда

[СОСl 2 ] равн = 1,3 – х

Подставим значения в выражение для константы равновесия

0,02 = х·х/(1,3 — х)

Преобразим выражение в квадратное уравнение

х 2 + 0,02х – 0,026 = 0

Решая уравнение, находим

Значит, [СО] равн = равн = 0,15 моль/л

Увеличив выход хлора в 3 раза получим:

Равн = 3·0,15 = 0,45 моль/л

Исходная концентрация [СОСl 2 ] исх2 при этом значении Cl 2 равна:

[СОСl 2 ] равн2 = 0,45·0,45/0,02 = 10,125 моль/л

[СОСl 2 ] исх2 = 10,125 + 0,45 = 10,575 моль/л

Таким образом, чтобы увеличить выход хлора в 3 раза, исходная концентрация СОCl 2 должна быть равна [СОСl 2 ] исх2 = 10,575 моль/л

Задача 12. Равновесие в системе H 2(г) + I 2(г) ↔ 2HI (г) установилось при следующих концентрациях участников реакции: HI – 0,05 моль/л, водорода и иода – по 0,01 моль/л. Как изменятся концентрации водорода и иода при повышении концентрации HI до 0,08 моль/л?

Решение.

H 2(г) + I 2(г) ↔ 2HI (г)

Найдем значение константы равновесия данной реакции:

К = 2 ̸ ·

К = 0,05 2 ̸ 0,01 · 0,01 = 25

При увеличении концентрации HI до 0,08 моль/л, равновесие сместится в сторону образования исходных веществ.

Из уравнения реакции видно, что образуется 2 моль HI, 1 моль H 2 и 1 моль I 2.

Обозначим новые равновесные концентрации через неизвестную х.

Равн2 = 0,08 — 2х равн2 = равн2 = 0,01 + х

Найдем х с помощью выражения для константы равновесия:

К = (0,08 — 2х) 2 ̸ [(0,01 + х) · (0,01 + х)] = 25

Решая уравнения находим:

Равн2 = равн2 = 0,01 + 0,004 = 0,0014 моль/л

Задача 13. Для реакции: FeO (к) + CO (г) ↔Fe (к) + CO 2(г) константа равновесия при 1000 о С равна 0,5. Начальные концентрации СО и СО 2 были соответственно равны 0,05 и 0,01 моль/л. Найдите их равновесные концентрации.

Решение.

FeO (к) + CO (г) ↔Fe (к) + CO 2(г)

Запишем выражение для константы равновесия :

К = [СО 2 ] ̸ [СО]

Пусть равновесные концентрации равны:

[СО] равн = (0,05 – х) моль/л [СО 2 ] равн = (0,01 + х) моль/л

Подставим значения в выражение для константы равновесия:

К = (0,01 + х)/(0,05 – х) = 0,5

Решая уравнение, найдем х:

[СО] равн = 0,05 – 0,01 = 0,04 моль/л [СО 2 ] равн = 0,01 + 0,01 = 0,02 моль/л

Категории ,