Подбор стехиометрических коэффициентов овр. Стехиометрия Стехиометрия - это теоретическая основа химических производств

Который изучает количественные соотношения между веществами, вступившими в реакцию и образовавшимися в ходе нее (от др.-греч. "стехион" - "элементный состав", "мейтрен" - "измеряю").

Стехиометрия является важнейшей для материальных и энергетических расчетов, без которых невозможно организовать ни одно химическое производство. Химическая стехиометрия позволяет рассчитать количество сырья, необходимого для конкретного производства, с учетом нужной производительности и возможных потерь. Ни одно предприятие не может быть открыто без предварительных расчетов.

Немного истории

Само слово «стехиометрия» - это изобретение немецкого химика Иеремии Бениамина Рихтера, предложенное им в своей книге, в которой впервые была описана идея возможности расчетов по химическим уравнениям. Позднее идеи Рихтера получили теоретическое обоснование с открытием законов Авогадро (1811), Гей-Люссака (1802), закона постоянства состава (Ж.Л. Пруст, 1808), кратных отношений (Дж. Дальтон, 1803), развитием атомно-молекулярного учения. Сейчас эти законы, а также закон эквивалентов, сформулированный самим Рихтером, называют законами стехиометрии.

Понятие «стехиометрия» используют в отношении и веществ, и химических реакций.

Стехиометрические уравнения

Стехиометрические реакции - реакции, в которых исходные вещества взаимодействуют в определенных соотношениях, а количество продуктов соответствует теоретическим расчетам.

Стехиометрические уравнения - уравнения, которые описывают стехиометрические реакции.

Стехиометрические уравнений) показывают количественные соотношения между всеми участниками реакции, выраженные в молях.

Большинство неорганических реакций - стехиометрические. Например, стехиометрическими являются три последовательные реакции получения серной кислоты из серы.

S + O 2 → SO 2

SO 2 + ½O 2 → SO 3

SO 3 + H 2 O → H 2 SO 4

Расчетами по этим уравнениям реакций можно определить, сколько необходимо взять каждого вещества, чтобы получить определенное количество серной кислоты.

Большинство органических реакций являются нестехиометрическими. Например, уравнение реакции крекинга этана выглядит так:

C 2 H 6 → C 2 H 4 + H 2 .

Однако на самом деле в ходе реакции всегда будут получаться разные количества побочных продуктов - ацетилена, метана и других, рассчитать которые теоретически невозможно. Некоторые неорганические реакции тоже не поддаются расчетам. Например, нитрата аммония:

NH 4 NO 3 → N 2 O + 2H 2 O.

Она идет по нескольким направлениям, поэтому невозможно определить, сколько нужно взять исходного вещества, чтобы получить определенное количество оксида азота (I).

Стехиометрия - это теоретическая основа химических производств

Все реакции, которые используются в или на производстве, должны быть стехиометрическими, то есть подвергаться точным расчетам. Будет ли завод или фабрика приносить выгоду? Стехиометрия позволяет это выяснить.

На основании стехиометрических уравнений составляют теоретический баланс. Необходимо определить, какое количество исходных веществ потребуется для получения нужного количества интересующего продукта. Далее проводятся эксплуатационные опыты, которые покажут реальный расход исходных веществ и выход продуктов. Разница между теоретическими расчетами и практическими данными позволяет оптимизировать производство и оценить будущую экономическую эффективность предприятия. Стехиометрические расчеты, кроме того, дают возможность составить тепловой баланс процесса с целью подбора оборудования, определить массы образующихся побочных продуктов, которые нужно будет удалять, и так далее.

Стехиометрические вещества

Согласно закону постоянства состава, предложенному Ж.Л. Прустом, любое химически имеет постоянный состав, вне зависимости от способа получения. Это означает, что, например, в молекуле серной кислоты H 2 SO 4 независимо от способа, которым она была получена, на два атома водорода всегда будет приходиться один атом серы и четыре атома кислорода. Стехиометрическими являются все вещества, имеющие молекулярную структуру.

Однако в природе широко распространены вещества, состав которых может отличаться в зависимости от метода получения или источника происхождения. Подавляющее большинство из них - это кристаллические вещества. Можно даже сказать, что для твердых веществ стехиометрия - это скорее исключение, чем правило.

Для примера рассмотрим состав хорошо изученных карбида и оксида титана. В оксиде титана TiO x X=0.7-1.3, то есть на один атом титана приходится от 0,7 до 1,3 атомов кислорода, в карбиде TiC x X=0.6-1.0.

Нестехиометричность твердых тел объясняется дефектом внедрения в узлах кристаллической решетки либо, наоборот, появлением вакансий в узлах. К таким веществам относятся оксиды, силициды, бориды, карбиды, фосфиды, нитриды и другие неорганические вещества, а также высокомолекулярные органические.

И хотя доказательства существования соединений с переменным составом были представлены только в начале 20-го века И. С. Курнаковым, такие вещества часто называют бертоллидами по фамилии ученого К.Л. Бертолле, предполагавшего, что состав любого вещества меняется.

Все количественные соотношения при расчете химических процессов основаны на стехиометрии реакций. Количество вещества при таких расчетах удобнее выражать в молях, или производных единицах (кмоль, ммоль, и т.д.). Моль является одной из основных единиц СИ. Один моль любого вещества соответствует его количеству, численно равному молекулярной массе. Поэтому молекулярную массу в этом случае следует считать величиной размерной с единицами: г/моль, кг/кмоль, кг/моль. Так, например, молекулярная масса азота 28 г/моль, 28 кг/кмоль, но 0,028 кг/моль.

Массовые и мольные количества вещества связаны известными соотношениями

N А = m А /М А; m А = N А М А,

где N А - количество компонента А, моль; m A - масса этого компонента, кг;

М А - молекулярная масса компонента А, кг/моль.

При непрерывных процессах поток вещества А можно выражать его моль-

ным количеством в единицу времени

где W A - мольный поток компонента А, моль/с; τ - время, с.

Для простой реакции, протекающей практически необратимо, обычно стехиомет

рическое уравнение записывается в виде

v A А + v B В = v R R + v S S.

Однако удобнее записывать стехиометрическое уравнение в виде алгебраическо

го, принимая при этом, что стехиометрические коэффициенты реагентов отрицательны, а продуктов реакции положительны:

Тогда для каждой простой реакции можно записать следующие равенства:

Индекс «0» относится к начальному количеству компонента.

Эти равенства дают основание получить следующие уравнения материального баланса по компоненту для простой реакции:

Пример 7.1. Реакция гидрирования фенола до циклогексанола протекает по урав-

С 6 Н 5 ОН + ЗН 2 = С 6 Н 11 ОН, или А + ЗВ = R.

Вычислить количество образовавшегося продукта, если начальное количество компонента А было 235 кг, а конечное - 18,8 кг

Решение: Запишем реакцию в виде

R - А - ЗВ = 0.

Молекулярные массы компонентов: М А = 94 кг/кмоль, М В = 2 кг/кмоль и

М R = 100 кг/кмоль. Тогда мольные количества фенола в начале и в конце реакции будут:

N A 0 = 235/94 = 2,5; N A 0 = 18,8/94 =0,2; n = (0,2 - 2,5)/(-1) = 2,3.

Количество образовавшегося циклогексанола будет равно

N R = 0 +1∙2,3 = 2,3 кмоль или m R = 100∙2,3 = 230 кг.

Определение стехиометрически независимых реакций в их системе при материальных и тепловых расчётах реакционных аппаратов необходимо для исключения реакций, являющихся суммой или разностью некоторых из них. Такую оценку наиболее просто можно осуществить по критерию Грама.

Чтобы не проводить излишних расчетов, следует оценить, является ли система стехиометрически зависимой. Для этих целей необходимо:


Транспонировать исходную матрицу системы реакций;

Умножить исходную матрицу на транспонированную;

Вычислить определитель полученной квадратной матрицы.

Если этот определитель равен нулю, то система реакций стехиометрически зависима.

Пример 7.2. Имеем систему реакций:

FеО + Н 2 = Fе + Н 2 O;

Fе 2 О 3 + 3Н 2 = 2Fе + 3Н 2 O;

FеО + Fе 2 O 3 + 4Н 2 = 3Fе + 4Н 2 O.

Эта система стехиометрически зависима, так как третья реакция является суммой двух других. Составим матрицу

Для каждого вещества реакции существуют следующие количества вещества:

Начальное количество i-го вещества (количество вещества до начала реакции);

Конечное количество i-го вещества (количество вещества по окончании реакции);

Количество прореагировавшего (для исходных веществ) или образовавшегося вещества (для продуктов реакции).

Так как количество вещества не может быть отрицательно, то для исходных веществ

Так как >.

Для продуктов реакции >, следовательно, .

Стехиометрические соотношения - соотношения между количествами, массами или объемами (для газов) реагирующих веществ или продуктов реакции, рассчитанные на основе уравнения реакции. В основе расчетов по уравнениям реакций лежит основной закон стехиометрии: отношение количеств реагирующих или образовавшихся веществ (в молях) равно отношению соответствующих коэффициентов в уравнении реакции (стехиометрических коэффициентов).

Для реакции алюмотермии, описываемой уравнением:

3Fe 3 O 4 + 8Al = 4Al 2 O 3 + 9Fe,

количества прореагировавших веществ и продуктов реакции относятся как

Для расчетов удобнее применять другую формулировку этого закона: отношение количества прореагировавшего или образовавшегося вещества в результате реакции к своему стехиометрическому коэффициенту - есть константа для данной реакции.

В общем случае для реакции вида

аА + bB = cC + dD,

где маленькие буквы обозначают коэффициенты, а большие - химические вещества, количества реагирующих веществ связаны соотношением:

Любые два члена этого соотношения, связанные равенством, образуют пропорцию химической реакции: например,

Если для реакции известна масса образовавшегося или прореагировавшего вещества реакции, то можно найти его количество по формуле

а затем, используя пропорцию химической реакции, можно найти для остальных веществ реакции. Вещество, по массе или количеству которого находят массы, количества или объемы других участников реакции, иногда называют опорным веществом.

Если даны массы нескольких реагентов, то расчет масс остальных веществ ведут по тому из веществ, которое находится в недостатке, т. е. полностью расходуется в реакции. Количества веществ, которые точно соответствуют уравнению реакции без избытка или недостатка, называют стехиометрическими количествами.

Таким образом, в задачах, связанных со стехиометрическими расчетами, основным действием является нахождение опорного вещества и расчет его количества, которое вступило или образовалось в результате реакции.

Расчет количества индивидуального твердого вещества

где - количество индивидуального твердого вещества А;

Масса индивидуального твердого вещества А, г;

Молярная масса вещества А, г/моль.

Расчет количества природного минерала или смеси твердых веществ

Пусть дан природный минерал пирит, основной компонент которого FeS 2 . Кроме него в состав пирита входят примеси. Содержание основного компонента или примесей указывается в массовых процентах, например, .

Если известно содержание основного компонента, то

Если известно содержание примесей, то

где - количество индивидуального вещества FeS 2 , моль;

Масса минерала пирита, г.

Аналогично рассчитывается количество компонента в смеси твердых веществ, если известно его содержание в массовых долях.

Расчет количества вещества чистой жидкости

Если известна масса, то расчет аналогичен расчету для индивидуального твердого вещества.

Если известен объем жидкости, то

1. Найти массу этого объема жидкости:

m ж = V ж ·с ж,

где m ж - масса жидкости г;

V ж - объем жидкости, мл;

с ж - плотность жидкости, г/мл.

2. Найти число молей жидкости:

Эта методика подходит для любого агрегатного состояния вещества.

Определить количества вещества Н 2 О в 200 мл воды.

Решение: если температура не оговаривается, то плотность воды принимается 1 г/мл, тогда:

Расчет количества растворенного вещества в растворе, если известна его концентрация

Если известна массовая доля растворенного вещества, плотность раствора и его объем, то

m р-ра = V р-ра ·с р-ра,

где m р-ра - масса раствора, г;

V р-ра - объем раствора, мл;

с р-ра - плотность раствора, г/мл.

где - масса растворенного вещества, г;

Массовая доля растворенного вещества, выраженная в %.

Определить количество вещества азотной кислоты в 500 мл 10 % раствора кислоты плотностью 1,0543 г/мл.

Определить массу раствора

m р-ра = V р-ра ·с р-ра = 500·1,0543 = 527,150 г.

Определить массу чистой HNO 3

Определить число молей HNO 3

Если известна молярная концентрация растворенного вещества и вещества и объем раствора, то

где - объем раствора, л;

Молярная концентрация i-го вещества в растворе, моль/л.

Расчет количества индивидуального газообразного вещества

Если дана масса газообразного вещества, то рассчитывается по формуле (1).

Если дан объем, измеренный при нормальных условиях, - то по формуле (2), если объем газообразного вещества измерен при любых других условиях, - то по формуле (3),формулы приведены на страницах 6-7.

При составлении уравнений окислительно-восстановительных реакций необходимо соблюдать два следующих важных правила:

Правило 1: В любом ионном уравнении должно соблюдаться сохранение зарядов. Это означает, что сумма всех зарядов в левой части уравнения («слева») должна совпадать с суммой всех зарядов в правой части уравнения («справа»). Это правило относится к любым ионным уравнениям, как для полных реакций, так и для полуреакций.

Заряды слева справа

Правило 2: Число электронов, теряемых в окислительной полуреакции, должно быть равно числу электронов, приобретаемых в восстановительной полуреакции. Например, в первом примере, приведенном в начале данного раздела (реакция между железом и гидратированными ионами двухвалентной меди), число электронов, теряемых в окислительной полуреакции, равно двум:

Следовательно, число электронов, приобретаемых в восстановительной полуреакции, тоже должно быть равно двум:

Для составления уравнения полной окислительно-восстановительной рекции из уравнений двух полуреакций может использоваться следующая процедура:

1. Уравнения каждой из двух полуреакций балансируются порознь, причем для выполнения указанного выше правила 1 к левой или правой части каждого уравнения добавляется соответствующее число электронов.

2. Уравнения обеих полуреакций балансируются по отношению друг к другу, так чтобы число электронов, теряемых в одной реакции, стало равно числу электронов, приобретаемых в другой полуреакции, как этого требует правило 2.

3. Уравнения обеих полуреакций суммируют для получения полного уравнения окислительно-восстановительной реакции. Например, суммируя уравнения двух приведенных выше полуреакций и удаляя из левой и правой части полученного уравнения

равное число электронов, находим

Сбалансируем уравнения приведенных ниже полуреакций и составим уравнение окислительно-восстановительной реакции окисления водного раствора какой-либо соли двухвалентного железа в соль трехвалентного железа с помощью кислого раствора калия.

Стадия 1. Сбалансируем сначала порознь уравнение каждой из двух полуреакций. Для уравнения (5) имеем

Чтобы сбалансировать обе стороны этого уравнения, необходимо добавить к его левой части пять электронов, либо вычесть столько же электронов из правой части. После этого получим

Это позволяет записать следующее сбалансированное уравнение:

Поскольку к левой части уравнения пришлось добавлять электроны, оно описывает восстановительную полуреакцию.

Для уравнения (6) можно записать

Чтобы сбалансировать это уравнение, можно добавить один электрон к его правой части. Тогда

Стехиометрия включает нахождение химических формул , составление уравнений химических реакций , расчёты, применяемые в препаративной химии и химическом анализе .

В то же время многие неорганические соединения в силу разных причин могут иметь переменный состав (бертоллиды). Вещества, для которых наблюдаются отклонения от законов стехиометрии, называют нестехиометрическими . Так, оксид титана(II) имеет переменный состав , в котором на один атом титана может приходиться от 0,65 до 1,25 атомов кислорода. Натриевольфрамовая бронза (относящийся к оксидным бронзам вольфрамат натрия) по мере удаления из неё натрия меняет свой цвет от золотисто-жёлтого (NaWO 3) до тёмного сине-зелёного (NaO 3WO 3), проходя через промежуточные красный и фиолетовый цвета . И даже хлорид натрия может иметь нестехиометрический состав, приобретая синий цвет при избытке металла . Отклонения от законов стехиометрии наблюдаются для конденсированных фаз и связаны с образованием твёрдых растворов (для кристаллических веществ), с растворением в жидкости избытка компонента реакции или термической диссоциацией образующегося соединения (в жидкой фазе, в расплаве).

Если исходные вещества вступают в химическое взаимодействие в строго определённых соотношениях, а в результате реакции образуются продукты, количество которых поддаётся точному расчёту, то такие реакции называются стехиометрическими, а описывающие их химические уравнения - стехиометрическими уравнениями . Зная относительные молекулярные массы различных соединений, можно рассчитать, в каких соотношениях эти соединения будут реагировать. Мольные соотношения между веществами - участниками реакции показывают коэффициенты, которые называют стехиометрическими (они же коэффициенты химических уравнений, они же коэффициенты уравнений химических реакций) . Если вещества реагируют в соотношении 1:1, то их стехиометрические количества называют эквимолярными .

Термин «стехиометрия» ввёл И. Рихтер в книге «Начала стехиометрии, или Искусство измерения химических элементов» (J. B. Richter. Anfangsgründe der Stöchyometrie oder Meßkunst chymischer Elemente . Erster, Zweyter und Dritter Theil. Breßlau und Hirschberg, 1792–93), обобщивший результаты своих определений масс кислот и оснований при образовании солей.

В основе стехиометрии лежат законы сохранения массы , эквивалентов , закон Авогадро , Гей-Люссака , закон постоянства состава , закон кратных отношений . Открытие законов стехиометрии, строго говоря, положило начало химии как точной науки. Правила стехиометрии лежат в основе всех расчётов, связанных с химическими уравнениями реакций и применяются в аналитической и препаративной химии, химической технологии и металлургии .

Законы стехиометрии используют в расчётах, связанных с формулами веществ и нахождением теоретически возможного выхода продуктов реакции. Рассмотрим реакцию горения термитной смеси :

Fe 2 O 3 + 2Al → Al 2 O 3 + 2Fe. (85.0 g F e 2 O 3 1) (1 m o l F e 2 O 3 160 g F e 2 O 3) (2 m o l A l 1 m o l F e 2 O 3) (27 g A l 1 m o l A l) = 28.7 g A l {\displaystyle \mathrm {\left({\frac {85.0\ g\ Fe_{2}O_{3}}{1}}\right)\left({\frac {1\ mol\ Fe_{2}O_{3}}{160\ g\ Fe_{2}O_{3}}}\right)\left({\frac {2\ mol\ Al}{1\ mol\ Fe_{2}O_{3}}}\right)\left({\frac {27\ g\ Al}{1\ mol\ Al}}\right)=28.7\ g\ Al} }

Таким образом, для проведения реакции с 85,0 граммами оксида железа (III), необходимо 28,7 граммов алюминия .

Энциклопедичный YouTube

    1 / 3

    Стехиометрия

    Химия 11 Стехиометрические химические законы

    Задачи по химии. Смеси веществ. Стехиометрические цепочки

    Субтитры

    Мы знаем, что такое химическое уравнение, и мы узнали, как его сбалансировать. Теперь мы готовы изучать стехиометрию. Это чрезвычайно причудливое слово часто заставляет людей думать, что стехиометрия трудна. В действительности она просто занимается изучением или расчетом соотношений между различными молекулами в реакции. Вот какое определение дает Википедия: Стехиометрия – это расчет количественных или измеряемых соотношений реагентов и продуктов. Вы увидите, что в химии часто используют слово реагенты. Для большинства наших целей вы можете использовать слово реагенты и реактанты как синонимы. Они оба являются реактантами в реакции. Термин «реагенты» иногда используют для определенных типов реакций, где вы хотите добавить реагент и посмотреть, что при этом произойдет. И проверить, верно ли ваше предположение о веществе или нет. Но для наших целей реагент и реактант – это одинаковые понятия. Имеется соотношение между реактантами и продуктами в сбалансированном химическом уравнении. Если нам дано несбалансированное уравнение, то мы знаем как получить сбалансированное. Сбалансированное химическое уравнение. Давайте займемся стехиометрией. Итак, чтобы получить опыт в балансировании уравнений, я всегда буду начинать с несбалансированных уравнений. Допустим, у нас есть триоксид железа. Запишу его. В нем два атома железа связаны с тремя атомами кислорода. Плюс алюминий... алюминий. В результате получается Al2O3 плюс железо. Напомню, что когда мы занимаемся стехиометрией, в первую очередь мы должны сбалансировать уравнения. Большое количество задач стехиометрии будет даваться с использованием уже сбалансированного уравнения. Но я считаю полезной практикой нахождение баланса самих уравнений. Давайте попытаемся сбалансировать его. У нас есть два атома железа здесь, в этом триоксиде железа. Сколько атомов железа мы имеем в правой части уравнения? У нас только один атом железа. Давайте умножим его на 2 вот здесь. Отлично, теперь у нас три кислорода в этой части. И три кислорода в этой части уравнения. Это выглядит хорошо. Алюминий в левой части уравнения. У нас только один атом алюминия. В правой части уравнения у нас два атома алюминия. Мы должны поставить 2 здесь. Мы сбалансировали это уравнение. Теперь мы готовы заняться стехиометрией. Приступим. Существует не один тип стехиометрических задач, но все они следуют таким схемам: если мне дано икс граммов этого, сколько граммов алюминия необходимо добавить, чтобы произошла реакция? Или если я дам вам игрек граммов этих молекул и зэт граммов этих молекул, то какие из них израсходуются первыми? Все это стехиометрия. Мы займемся именно этими двумя задачами в данном видеоуроке. Предположим, что нам было дано 85 граммов триоксида железа. Запишем это. 85 граммов триоксида железа. Мой вопрос к вам: сколько граммов алюминия нам нужно? Сколько грамм алюминия нам нужно? Это просто. Если вы посмотрите на уравнение, то вы сразу увидите мольное отношение. На каждый моль этого, итак, на каждый моль этого... на каждый используемый атом триоксида железа нам нужно два атома алюминия. Так что нам необходимо вычислить, сколько молей этой молекулы содержится в 85 граммах. И затем нам нужно иметь удвоенное количество молей алюминия. Потому что на каждый моль триоксида железа у нас приходится два моля алюминия. Мы просто смотрим на коэффициенты, мы просто смотрим на числа. Одна молекула триоксида железа соединяется с двумя молекулами алюминия, чтобы произошла реакция. Давайте сначала вычислим, сколько молей содержится в 85 граммах. Какова атомная масса или массовое число всей этой молекулы? Позвольте мне сделать это ниже здесь. Итак, у нас два железа и три кислорода. Давайте я выпишу атомные массы железа и кислорода. Железо вот здесь, 55,85. И я думаю вполне достаточно округлить до 56. Представим, что мы имеем дело с разновидностью железа, точнее говоря с изотопом железа, который имеет 30 нейтронов. Он имеет атомное массовое число 56. Железо имеет атомное массовое число 56. Тогда как у кислорода, как мы уже знаем, оно равно 16. Железо было 56. Эта масса будет... будет 2, умноженное на 56, плюс 3, умноженное на 16. Мы можем это проделать в уме. Но это не урок математики, так что вычислю все на калькуляторе. Посмотрим, 2, умноженное на 56... 2, умноженное на 56, плюс 3, умноженное на 16, равно 160. Это верно? Это 48 плюс 112, верно, 160. Итак, одна молекула триоксида железа будет иметь массу, равную ста шестидесяти атомным единицам массы. Ста шестидесяти атомным единицам массы. Итак, один моль или... один моль или 6,02, умноженное на 10 в 23 степени, молекул оксида железа будет иметь массу... железо, диоксид железа, да... будет иметь массу 160 граммов. В нашей реакции мы сказали, что мы начинаем с 85 граммов оксида железа. Сколько это молей? 85 граммов триоксида железа... 85 граммов триоксида железа равно дроби 85/160 моля. Это равно 85, деленному на 160, то есть 0,53. 0,53 моля. Все, с чем мы работали до сих пор, что изображалось зеленым и голубым, нужно было, чтобы определить сколько молей содержится в 85 граммах триоксида железа. Мы определили, что это равно 0,53 моля. Потому что целый моль был бы 160 граммов. Но мы имеем только 85. Мы знаем из сбалансированного уравнения, что на каждый моль триоксида железа нам нужно два моля алюминия. Если у нас 0,53 моля молекул железа, точнее триоксида железа, то нам будет необходимо удвоенное количество алюминия. Нам потребуется 1,06 моля алюминия. Я просто возьму 0,53, умноженное на 2. Потому что соотношение равно 1:2. На каждую молекулу одного вещества нам нужно две молекулы другого. На каждый моль одного вещества нам необходимо два моля другого. Если у нас 0,53 моля, вы умножаете это на 2, и получается 1,06 моля алюминия. Отлично, итак, мы просто вычислили, сколько граммов содержит моль алюминия и затем, умножив его, получили 1,06 и на этом закончили. Алюминий. В Великобритании это слово произносят немного по-другому. Вообще-то мне нравится британское произношение. Алюминий имеет атомный вес 26,98. Представим, что алюминий, с которым мы имеем дело, имеет массу 27 атомных единиц массы. Так. Один алюминий имеет массу 27 атомных единиц массы. Один моль алюминия будет составлять 27 граммов. Или 6,02, умноженное на 10 в 23 степени, атомов алюминия, которые дают 27 граммов. Если нам нужно 1,06 моля, то сколько это будет? 1,06 моля алюминия равно 1,06, умноженному на 27 граммов. Сколько это? Давайте посчитаем. 1,06, умноженное на 27, равно 28,62. Нам нужно 28,62 грамма алюминия... алюминия, чтобы до конца использовать наши 85 граммов триоксида железа. Если бы у нас было больше, чем 28,62 грамма алюминия, то они остались бы после того, как реакция произошла. Предположим, что мы смешиваем все как нужно, и реакция протекает до конца. Мы поговорим больше об этом в дальнейшем. В ситуации, где у нас имеется больше 28,63 грамма алюминия, эта молекула будет лимитирующем реагентом. Так как у нас избыток этого, вот что будет лимитировать этот процесс. Если мы имеем меньше 28,63 грамма, алюминия, то алюминий будет лимитирующим реагентом, потому что мы не сможем использовать все 85 граммов наших молекул железа, точнее триоксида железа. В любом случае, я не хочу вас запутать этими лимитирующими реагентами. В следующем видеоуроке мы рассмотрим задачу, целиком посвященную лимитирующим реагентам. Subtitles by the Amara.org community