Законы кирхгофа являются одной из форм закона сохранения энергии и относятся к фундаментальным законам природы. Закон сохранения энергии Закон сохранения энергии в конденсаторе

2.12.1 Сторонний источник электромагнитного поля и электрического тока в электрической цепи.

☻ Сторонний источник является такой составной частью электрической цепи, без которой электрический ток в цепи не возможен. Это делит электрическую цепь на две части, одна из которых способна проводить ток, но не возбуждает его, а другая “сторонняя”– проводит ток и возбуждает его. Под действием ЭДС стороннего источника в цепи возбуждается не только электрический ток, но и электромагнитное поле, причем то и другое сопровождается при этом передачей энергии от источника в цепь.

2.12.2 Источник ЭДС и источник тока.

☻ Сторонний источник в зависимости от своего внутреннего сопротивления может быть источником ЭДСили источником тока

Источник ЭДС:
,

не зависит от.

Источник тока:
,


не зависит от.

Таким образом, любой источник, который выдерживает стабильное напряжение в цепи при изменении в ней тока, может рассматриваться как источник ЭДС. Это относится и к источникам стабильного напряжения в электрических сетях. Очевидно, условия
или
для реальных сторонних источников следует рассматривать как идеализированные приближения, удобные для анализа и расчета электрических цепей. Так при
взаимодействие стороннего источника с цепью определяется простыми равенствами

,
,
.

        Электромагнитное поле в электрической цепи.

☻ Сторонние источники являются либо накопителями, либо генераторами энергии. Передача энергии источниками в цепь происходит только через электромагнитное поле, которое возбуждается источником во всех элементах цепи, независимо от их технических особенностей и прикладного значения, а также от сочетания физических свойств в каждом из них. Именно электромагнитное поле является тем первичным фактором, который задает распределение энергии источника по элементам цепи и определяет физические процессы в них, в том числе и электрический ток.

2.12.4 Сопротивление в цепях постоянного и переменного тока.

Рис 2.12.4

Обобщенные схемы одноконтурных цепей постоянного и переменного тока.

☻ В простых одноконтурных цепях постоянного и переменного тока зависимость тока от ЭДС источника можно выразить подобными формулами

,
.

Это дает возможность и сами цепи представить подобными схемами, как это показано на рис.2.12.4.

Важно подчеркнуть, что в цепи переменного тока величина означает не активное сопротивление цепи, а импеданс цепи, который превосходит активное сопротивление по той причине, что индуктивные и емкостные элементы цепи оказывают переменному току дополнительное реактивное сопротивление, так что

,

,
.

Реактивные сопротивления иопределяются частотой переменного тока, индуктивностьюиндуктивных элементов (катушек) и емкостьюемкостных элементов (кондесаторов).

2.12.5 Фазовый сдвиг

☻ Элементы цепи с реактивными сопротивлениями вызывают в цепи переменного тока особое электромагнитное явление- сдвиг по фазе между ЭДС и током

,
,

где - фазовый сдвиг, возможные значения которого определяются уравнением

.

Отсутствие фазового сдвига возможно в двух случаях, когда
или когда емкостные и индуктивные элементы в цепи отсутствуют. Фазовый сдвиг затрудняет вывод мощности источника в электрическую цепь.

2.12.6 Энергия электромагнитного поля в элементах цепи.

☻ Энергия электромагнитного поля в каждом элементе цепи состоит из энергии электрического поля и энергии магнитного поля

.

Однако элемент цепи может быть так выполнен, что для него одно из слагаемых этой суммы будет доминирующим, а другое – не существенным. Так при характерных частотах переменного тока в конденсаторе
, а в катушке, наоборот,
. Поэтому можно считать, что конденсатор является накопителем энергии электрического поля, а катушка-накопителем энергии магнитного поля и для них соответственно

,
,

где учтено, что для конденсатора
, а для катушки
. Две катушки в одной цепи могут быть индуктивно независимыми или же индуктивно связанными через свое общее магнитное поле. В последнем случае энергия магнитных полей катушек дополняется энергией их магнитного взаимодействия

,

,
.

Коэффициент взаимной индукции
зависит от степени индуктивной связи между катушками, в частности от их взаимного расположения. Индуктивная связь может быть не существенной или отсутствовать полностью, тогда
.

Характерным элементом электрической цепи является резистор сопротивлением . Для него энергия электромагнитного поля
, т.к.
. Поскольку в резисторе энергия электрического поля испытывает необратимое превращение в энергию теплового движения, то для резистора

,

где количество теплоты соответствует закону Джоуля-Ленца.

Особым элементом электрической цепи является ее электромеханический элемент, способный при прохождении через него электрического тока выполнять механическую работу. Электрическим током в подобном элементе возбуждается сила или момент силы, под действием которых происходят линейные или угловые перемещения самого элемента или его частей относительно друг друга. Эти механические явления, связанные с электрическим током, сопровождаются превращением энергии электромагнитного поля в элементе в его механическую энергию, так что

где работа
выражается в соответствии с ее механическим определением.

2.12.7 Закон сохранения и превращения энергии в электрической цепи.

☻ Сторонний источник является не только источником ЭДС, но и источником энергии в электрической цепи. За время
от источника в цепь поступает энергия, равная работе ЭДС источника

где
- мощность источника, или что тоже, интенсивность поступления энергии от источника в цепь. Энергия источника превращается в цепи в другие виды энергии. Так в одноконтурной цепи
с механическим элементом работа источника сопровождается изменением энергии электромагнитного поля во всех элементах цепи в полном соответствии с энергетическим балансом

Данное уравнение для рассматриваемой цепи выражает законы сохранения энергии. Из него следует

.

После соответствующих подстановок уравнение баланса мощности можно представить в виде

.

Это уравнение в обобщенной форме выражает закон сохранения энергии в электрической цепи на основе понятия мощности.

        Закон

Кирхгофа

☻ После дифференцирования и сокращения тока из представленного закона сохранения энергии как следствии вытекает закон Кирхгофа

где в замкнутом контуре перечисленные напряжения на элементах цепи означают

,
,

,
,
.

2.12.9 Применение закона сохранения энергии для расчета электрической цепи.

☻ Приведенные уравнения закона сохранения энергии и закона Кирхгофа относятся только к квазистационарным токам, при которых цепь не является источником излучения электромагнитного поля. Уравнение закона сохранения энергии позволяет в простой и наглядной форме анализировать работу многочисленных одноконтурных электрических цепей как переменного, так и постоянного тока.

Полагая константы
равными нулю по отдельности или в их сочетании, можно рассчитывать разные варианты электрических цепей, в том числе при
и
. Ниже рассматриваются некоторые варианты расчета таких цепей.

2.12.10 Цепь
при

☻ Одноконтурная цепь, в которой через резистор заряжается конденсатор от источника с постоянной ЭДС (
). Принимается:
,
,
, а также
при
. При таких условиях закон сохранения энергии для данной цепи может быть записан в следующих равнозначных вариантах

,

,

.

Из решения последнего уравнения следует:

,
.

2.12.11 Цепь
при

☻ Одноконтурная цепь, в которой источник постоянной ЭДС (
) замыкается на элементы и. Принимается:
,
,
, а также
при
. При таких условиях закон сохранения энергии для данной цепи можно представить в следующих равнозначных вариантах

,

,

.

Из решения последнего уравнения следует

.

2.12.12 Цепь
при
и

☻ Одноконтурная цепь без источника ЭДС и без резистора, в которой заряженный конденсатор замыкается на индуктивный элемент. Принимается:
,
,
,
,
, а также при

и
. При таких условиях закон сохранения энергии для данной цепи с учетом того, что

,

,

.

Последнее уравнение соответствует свободным незатухающим колебаниям. Из его решения следует

,
,

,
,
.

Данная цепь является колебательным контуром.

2.12.13 Цепь RLC при

☻ Одноконтурная цепь без источника ЭДС, в которой заряженный конденсатор С замыкается на элементы цепи R и L. Принимается:
,
, а также при

и
. При таких условиях законно закон сохранения энергии для данной цепи с учетом того, что
, может быть записан в следующих вариантах

,

,

.

Последнее уравнение соответствует свободным затухающим колебаниям. Из его решения следует

,

,
,
,
.

Данная цепь является колебательным контуром с диссипативным элементом – резистором, из-за которого общая энергия электромагнитного поля в ходе колебаний убывает.

2.12.14 Цепь RLC при

☻ Одноконтурная цепь RCL представляет собой колебательный контур с диссипативным элементом. В цепи действует переменная ЭДС
и возбуждает в ней вынужденные колебания, в том числе и резонанс.

Принимается:
. При этих условиях закон сохранения энергии может быть записан в нескольких равнозначных вариантах.

,

,

,

Из решения последнего уравнения следует, что колебания тока в цепи являются вынужденными и происходят с частотой действующей ЭДС
, но со сдвигом фаз по отношению к ней, так что

,

где – фазовый сдвиг, значение которого определяется уравнением

.

Поступающая в цепь от источника мощность переменна

Усредненное значение этой мощности по одному периоду колебаний определяется выражением

.

Рис 2.12.14

Резонанс зависимости

Таким образам выводимая из источника в цепь мощность определяется фазовым сдвигом. Очевидно при его отсутствии указанная мощность становиться максимальной и это соответствует резонансу в цепи. Он достигается потому, что сопротивление цепи при отсутствии фазового сдвига принимает минимальное значение, равное только активному сопротивлению.

.

Отсюда следует, что при резонансе выполняются условия.

,
,
,

где – резонансная частота.

При вынужденных колебаниях тока его амплитуда зависит от частоты

.

Резонансное значение амплитуды достигается при отсутствии фазового сдвига, когда
и
. Тогда

,

На рис. 2.12.14 показана резонансная кривая
при вынужденных колебаниях в цепиRLC.

2.12.15 Механическая энергия в электрической цепях

☻ Механическая энергия возбуждается особыми электромеханическими элементами цепи, которые при прохождении по ним электрического тока выполняют механическую работу. Это могут быть электрические двигатели, электромагнитные вибраторы и др. Электрическим током в этих элементах возбуждаются силы или моменты сил, под действием которых происходят линейные, угловые или колебательные перемещения, при этом электромеханический элемент становиться носителем механической энергии

Варианты технической реализации электромеханических элементов практически безграничны. Но в любом случае происходит одно и тоже физическое явление – превращение энергии электромагнитного поля в механическую энергию

.

Важно подчеркнуть, что это превращение происходит в условиях электрической цепи и при безусловном выполнении закона сохранения энергии. Следует учесть, что электромеханический элемент цепи при любом своем назначении и техническом исполнении является накопителем энергии электромагнитного поля
. Она накапливается на внутренних емкостных или индуктивных частях электромеханического элемента, между которыми и возбуждается механическое взаимодействие. При этом механическая мощность электромеханического элемента цепи определяется не энергией
, а производной по времени от нее, т.е. интенсивностью ее измененияР внутри самого элемента

.

Таким образом, в случае простой цепи, когда сторонний источник ЭДС замкнут только на электромеханический элемент, закон сохранения энергии представляется в виде

,

,

где учтены неизбежные необратимые тепловые потери мощности стороннего источника. В случае более сложной цепи, в которой есть дополнительные накопители энергии электромагнитного поля W , закон сохранения энергии записывается в виде

.

Учитывая, что
и
, последнее уравнение можно записать в виде

.

В простой цепи
и тогда

.

Более строгий подход требует учета процессов трения, которые дополнительно уменьшают полезную механическую мощность электромеханического элемента цепи.

Рассмотрим системы из двух проводников в вакууме. Один проводние создает поле , другой. Результирующее поле
, квадрат этой величины. Полная энергия этой системы
. Первые два интеграла – это собственные знергии проводников, а последний = потенциальная энергия их взаимодействия. Собственная энергия заряженного тела – всегда величина положительная, положительной является и полная энергия. Энергия же взаимодействия может быть как положительной, так и отрицательной. При всех возможных перемещениях заряженных тел, не изменяющих конфигурацию зарядов на каждом теле, собственная энергия остается постоянной, поэтому ее можно считать аддитивной постоянной в выражении для полной энергии. В этих случаях изменение полной энергии происходит только за счет изменения потенциальной энергии взаимодействия.

1.4.6. Закон сохранения энергии для электрического поля в несегнетоэлектрической среде

Энергия электрического поля, создаваемого какой-либо системой заряженных тел (проводников, диэлектриков), изменяется, если тела системы перемещаются (то есть меняется взаимное положение тел), или, если изменяются их заряды. При этом совершают работу внешние силы, приложенные к телам системы, и источники электрической энергии (батареи, генераторы, и тому подобные), присоединенные к проводникам системы.

Закон сохранения энергии для малого изменения состояния системы при постоянной температуре и постоянной плотности среды имеет вид:

Здесь:
- работа внешних сил;
- работа источников электрической энергии;
- изменение энергии электростатического поля системы;
- изменение кинетической энергии системы;
- теплота Джоуля - Ленца, которая вызвана прохождением электрических токов в системе при изменении или перераспределении зарядов проводников.

Если перемещение тел производится квазистатически, то есть очень медленно, то можно пренебречь изменением кинетической энергии системы,
, и считать работу внешних сил
численно равной и противоположной по знаку работе
, совершаемой в рассматриваемом процессе силами, которые действуют на тела системы в электрическом поле и называются пондемоторными силами. В этом случае закон сохранения энергии можно записать в виде:.

Работа источников электрической энергии за малый промежуток времени
равна:
, где
- общее число источников электрической энергии в рассматриваемой системе;- ЭДС-того источника,
- заряд, проходящий через этот источник за время
,
- ток в источнике, работа
, если токидет от катода к аноду.

Если заряд каждого проводника не изменяется и не перераспределяется , то выражение закона сохранения энергии для квазистатического изменения состояния системы имеет вид:
,

то есть в этом процессе работа пондемоторных сил равна убыли энергии электрического поля системы. С помощью этого выражения можно рассчитывать работу пондемоторных сил.

Найдем силы, действующие на пластины заряженного плоского конденсатора. Расстояние между пластинами
, где- площадь пластины. Конденсатор заряжен и отключен от источника питания, так что заряд конденсатора
,
- поверхностная плотность заряда. При увеличении расстояния сила, приложенная к перемещаемой пластине, совершает работу
. Изменение энергии электростатического поля в конденсаторе
, где- объемная плотность энергии в прилегающем к пластине слое толщиной
. Таким образом, из закона сохранения энергии следует, что пондемоторная сила равна
.

Закон сохранения энергии в конденсаторных схемах Задача 1  A  Q 0 W A  kмех  ист Вариант 1 При разомкнутом ключе К2 ключ К1 замыкают и после окончания переходных процессов размыкают. После этого замыкают ключ К2. Решение. По закону сохранения энергии изменение энергии в конденсаторе определяется соотношением мехA  ­ работа механических сил равна нулю, так как нет перемещений внутри конденсаторов. истA  ­ работа источника тока равна нулю, так как при замыкании ключа К2 ключ К1 разомкнут, источник тока отключен. Q  количество теплоты, которое выделяется при движении зарядов. W W кн Начальная и конечная энергии конденсаторов соответствуют соответственно разомкнутому и замкнутому ключу К2. Для начального состояния (конденсаторы заряжаются от источника тока): Q Q W W кк       0 кн кк Для конечного состояния (в схеме остаются только конденсатор С2 и параллельный ему конденсатор С3.). Заряды конденсаторов сохраняются., так как цепь разомкнута. q 23  2 Ec W кк   2 q 23 2 C 23  2 2 E c 4   2 (c 2) c  2 3 2 E c Подставляем энергии конденсаторов в соотношение для Q и получим ответ. 2 Q E c   Вариант 2. 2 3 2 E c  1 3 2 E c  2 c C o  q o  W кн  2) c 2 c Ec 2 1    () C C C 6 (c c 3     c C C C c 6 3 2 1      q q q 2 E C 1 3  2 С U 2 с E о 2 2 cE 2 2 о   2 o кн  ист Q A kk  ист   kkкн  При разомкнутом ключе К2 ключ К1 замыкают и после окончания переходных процессов замыкают ключ К2. Решение. В этом случае ключ К2 замыкают под напряжением, источник тока остается подключенным постоянно, участвует в перезарядке конденсаторов, поэтому совершает работу. Закон сохранения энергии в этом случае принимает вид:  W W Q W W A Начальное состояние схемы такое же, как в варианте 1, поэтому начальные заряды и энергия конденсаторов соответствуют рассчитанным. В конечном состоянии после замыкания ключа К2 оставшиеся параллельно соединенные конденсаторы С2 и С3 будут заряжаться (дозаряжаться) от источника тока. C q ok     c C C 3 2 ok    3 Ec E C ok 2 2 C E 3 E c ok 2 2 Работа источника тока: E q E q A (ист ok Подставляем энергии конденсаторов в соотношение для Q и получим ответ.       E (3 Ec  2 Ec)  q oн)  2 E c 2 c  3 c W kk   2 Q E c   2 2 E c E c   2 E c 3 2 1 3 Одинаковый ответ в первом и втором варианте – это не закономерность, а случайность. Задача 2 В исходном состоянии для схемы рис.2 С1=2С, С2=3С, э.д.с. источника тока равна E. В плоском воздушном конденсаторе С1 с помощью внешней силы пластины очень быстро раздвинули, увеличив расстояние между пластинами в 2 раза. Какое количество теплоты выделится в схеме в последующем переходном процессе? Решение. При быстром движении пластины против силы Кулона заряд пластин сохраняется, сила Кулона совершает отрицательную работу, а внешняя сила – положительную работу. Вторая пластина двигается в поле первой пластины, электроемкость первого конденсатора уменьшается в 2 раза. A мех  F k   dЕ q 1 2 q   d q н 1  2 S 0  2 н d 2 q d   1 н  2 S 0 2 q  1 н 2 C н Для начального состояния (до начала движения) : C 0 н  1 н  С C 2  C C 2 1 н  q 0 н  q 1 н  q 2 н   2 3 c c  3 2 c c Ec 6 5   6 5 c A мех  2 2 36 E c  25 2  0,72 2 E c W кн  2 6 сE  5 2  0,6 2 E c Так как электроемкость С1 уменьшилась быстро, то при последующем переходном процессе напряжение на нем должно увеличиваться, поэтому для того чтобы сумма напряжений на С1 и С2 оставалась равна E, заряд будет уходить в источник тока, значит, источник тока будет совершать отрицательную работу. Для конечного состояния:  3 c c  3 c c  C C 2  C C 1 3 4 C 0    c 1 k 2 k k k н 0 2 2 ()       E q 0 W кк A ист (E q 0 3 cE  2 4 C E k 2 3 4 3 8 Закон сохранения энергии W W Q Q W W AА Задача 3  kkкн    мех  kkкн  ист  мех   ист AА cE Ec  6 5 Ec)   9 20 2 E c   0, 45 2 E c 2  0,375 cE 2   (0,375 0,6 0,72 0, 45) E c    2  0, 495 E c 2 В исходном состоянии для схемы рис.3 С1= С2=С, э.д.с. источника тока равна E. В плоском воздушном конденсаторе С1 с помощью внешней силы пластины очень быстро cдвинули, уменьшив расстояние между пластинами в 2 раза. Какое количество теплоты выделится в схеме в последующем переходном процессе? Решение. Для начального состояния:    с с  2 CС oн с 2 qЕ С он   сЕ W он  2   кн 2  С 1 н 2 сE  сЕ 2 2 При быстром перемещении пластин конденсатора все заряды сохраняются, а электроемкость первого конденсатора увеличивается в 2 раза. При этом для постоянства разности потенциалов на источнике тока необходим больший заряд, поэтому в последующем переходном процессе заряд потечет от источника тока, и источник тока будет совершать положительную работу. 2 c сЕ)     qсЕ c ок  3 c 2 3 C oк  сЕ    2 C c 1 к  2 (3 AЕ сЕ ист 2 3 сЕ 2 W кк  A мех   2 q 1 н  2 S oн d  н 2 2 q   1 н 4 Cс 1   2 2 Е с 4 2   сЕ 4 Так как сила Кулона совершает отрицательную работу, то внешняя сила – положительную работу при перемещении на расстояние   Q W WА кк кн Задача 4  А ист   сЕ мех 2 нd 1 2  cЕ 1,5 .  2 сЕ 2  0,25 cЕ 2  0,25 cЕ 2 1 01 02 0   Решение. Данная задача с ненулевыми начальными условиями и особенность ее в том, что при замыкании ключа К суммарный заряд правой пластины конденсатора C1 и левой пластины конденсатора С2 неравен нулю:  ­ для согласного включения конденсаторов q U C U C 0 2 (полярности так, как на рисунке 4). Этот заряд будет сохраняться (по закону сохранения электрического заряда) при любых последующих переходных процессах. Так как схема подключена к источнику тока, то при замыкании ключа К заряды конденсаторов (правых пластин) изменятся и будут равны после переходного процесса q1 и q2 , а напряжения U1 и U2. Эти заряды и напряжения должны соответствовать закону сохранения заряда и соотношению напряжений при последовательном согласном включении. Получаем систему двух уравнений. Если бы конденсатор С2 был включен встречно (по полярности), то знаки и q2, и U2 изменились бы на противоположные. 1 U U q q 2 1    2  E  q 0  q q 1 2 C C 1 q q 1  2 2  E  q 0 q C 1 2  (q 1  q C EC C 0 2)  1 1          Находим заряды конденсаторов. q 1  q 2  EС С q C 1 0 EС С U C U C C 2 02 1 2   EС С q C 2 0 EС С U C U C C 2 01 2  1  1 2  C C 2  1 2  C C 2 1 1 1  2  01  2 1 C C 2 2 01  C C q p , то есть 0 1 1 2 1  q p или 0 Из соотношений ясно, что возможны ситуации, когда конденсаторы в результате переходного процесса могут перезарядиться на противоположные полярности. Работа источника тока (для положительного полюса) : истAЕ q   2 1 2   q 2 q 2  q 02  Можно показать, что EC C U C U C C 1 01 1 2   2 02 2  C C 1    q q 2 1 2 2  U C 2 02  EC C U C C U C C 1 01 1 2   02 2 C C 1 1  2 2 Энергия конденсаторов для начального состояния: W W W н 1 н   н  2 2 01 С U 1 2  2 02 С U 2 2 Для конечного состояния: W k  2 q 2 2 C 2  2 q 1 2 C 1  2 C U об 2 об Следует отметить, что W k  , так как при ненулевых начальных условиях общий заряд неравен зарядам последовательно соединенных конденсаторов. Определим значение выделившейся теплоты при следующих численных значениях: C1=c, С2=3с, E= 8 в, U01 =4 в, U02 =2 в. q 0 q 1   q  4 8       2 3 2 c c c     3 2 c 11 c c c     3 c 2 c      4 c 3 3 c c c 4 c 14    2 c  3 c q 2 8 c   8 c   3 c 4 c  c 2 3 c   15 2 c 3 2 c Wс н W k  2 с   16 2 11 (2   8 1,5 c   c)  3 4 с 2  2 c  12 c  A ист Q W W Aс ист н к Задача 5. 15 c (2 2)  2 3 c  121 c 8  75 c 8  24,5 c  14  c 24,5 c  12 c  1,5 2 1    E U U , поэтому заряды ни от источника, ни к источнику не потекут Решение. 1. Теплота выделяется только в том случае, когда происходит перераспределение зарядов, т.е. течет ток. При размыкании ключа это может произойти только от источника тока. Разность потенциалов между точками А и В при этом не изменяется так как АВU (заряды могут перетекать, если потенциал положительного полюса источника тока неравен потенциалу т.В, а потенциал отрицательного полюса источника неравен потенциалу т.А). Значит, заряды конденсаторов не изменятся, работа источника тока равна нулю, поэтому теплота при размыкании ключа выделяться не будет. 2. Неизменность зарядов конденсаторов можно доказать, используя закон сохранения заряда для средней точки схемы.  Для начального состояния:     2 q 1 н q 23 C он q он  С С С) 1 3  С С С 1 3 ( 2 EC 1   C C C 3 1 2 2)  (EС С С 3 1   С С С 1 3 EC C 3    C C C 3 1 1 2 2 q 23  (C C U    U ) 23 23 2 3   q 3 н C U 3 23 Так как при размыкании ключа отключается левая пластина конденсатора С3 от средней точки, то с ней уходит и ее отрицательный заряд q3н. Поэтому по закону сохранения заряда для средней точки получим: q 1  q 2  q 3 н  1 EC C 3   C C C 3 1 2 Решая это уравнение совместно с уравнением для напряжений при последовательном соединении U U  1 2    E q q 2 1 C C 1 2  E , можно определить q1 и q2 ­ установившиеся после переходного процесса заряды конденсаторов. Получим q 1 )  EС С С 3  С С С 1 3 (1  2 2 , значение которого равно q1н, что означает, что перераспределения зарядов при размыкании ключа происходить не будет.

Всеобщий закон природы. Следовательно, он применим в том числе, и к электрическим явлениям. Рассмотрим два случая превращения энергии в электрическом поле:

  1. Проводники являются изолированными ($q=const$).
  2. Проводники соединены с источниками тока при этом не изменяются их потенциалы ($U=const$).

Закон сохранения энергии в цепях с постоянными потенциалами

Допустим, что имеется система тел, которая может включать в себя как проводники, так и диэлектрики. Тела системы могут совершать малые квазистатические перемещения. Температура системы поддерживается постоянной ($\to \varepsilon =const$), то есть тепло подводится к системе, или отводится от нее при необходимости. Диэлектрики, входящие в систему будем считать изотропными, плотность их положим постоянной. В этом случае доля внутренней энергии тел, которая не связана с электрическим полем изменяться не будет. Рассмотрим варианты превращений энергии в подобной системе.

На любое тело, которое находится в электрическом поле, действуют пондемоторные силы (силы, действующие на заряды внутри тел). При бесконечно малом перемещении пондемоторные силы выполнят работу $\delta A.\ $Так как тела перемещаются, то изменение энергии dW. Так же при перемещении проводников изменяется их взаимная емкость, следовательно, для сохранение потенциала проводников неизменным, необходимо изменять заряд на них. Значит, каждый из источников тора совершает работу равную $\mathcal E dq=\mathcal E Idt$, где $\mathcal E $ - ЭДС источника тока, $I$ -- сила тока, $dt$ - время перемещения. В нашей системе возникнут электрические токи, и в каждой ее части выделится тепло:

По закону сохранения заряда, работа всех источников тока равна механической работе сил электрического поля плюс изменение энергии электрического поля и тепло Джоуля -- Ленца (1):

В случае если проводники и диэлектрики в системе неподвижны, то $\delta A=dW=0.$ Из (2) следует, что вся работа источников тока превращается в тепло.

Закон сохранения энергии в цепях с постоянными зарядами

В случае $q=const$ источники тока не войдут в рассматриваемую систему, тогда левая часть выражения (2) станет равна нулю. Помимо этого, тепло Джоуля - Ленца возникающее за счет перераспределения зарядов в телах при их перемещении обычно считают несущественным. В таком случае закон сохранения энергии будет иметь вид:

Формула (3) показывает, что механическая работа сил электрического поля равна уменьшению энергии электрического поля.

Применение закона сохранения энергии

Используя закон сохранения энергии в большом количестве случаев можно рассчитать механические силы, которые действуют в электрическом поле, при чем сделать это порой существенно проще, чем, если рассматривать непосредственное действие поля на отдельные части тел системы. При этом действуют по следующей схеме. Допустим необходимо найти силу $\overrightarrow{F}$, которая действует на тело в поле. Полагают, что тело перемещается (малое перемещение тела $\overrightarrow{dr}$). Работа искомой силы равна:

Пример 1

Задание: Вычислите силу притяжения, которая действует между пластинами плоского конденсатора, который помещен в однородный изотропный жидкий диэлектрик с диэлектрической проницаемостью $\varepsilon $. Площадь пластин S. Напряжённость поля в конденсаторе E. Пластины отключены от источника. Сравните силы, которые действуют на пластины при наличии диэлектрика и в вакууме.

Так как сила может быть только перпендикулярна пластинам, то перемещение выберем по нормали к поверхности пластин. Обозначим через dx перемещение пластин, то механическая работа будет равна:

\[\delta A=Fdx\ \left(1.1\right).\]

Изменение энергии поля при этом составит:

Следуя уравнению:

\[\delta A+dW=0\left(1.4\right)\]

Если между пластинами находится вакуум, то сила равна:

При заполнении конденсатора, который отключен от источника, диэлектриком напряженность поля внутри диэлектрика уменьшается в $\varepsilon $ раз, следовательно, уменьшается и сила притяжения пластин во столько же раз. Уменьшение сил взаимодействия между пластинами объясняется наличием сил электрострикции в жидких и газообразных диэлектриках, которые расталкивают пластины конденсатора.

Ответ: $F=\frac{\varepsilon {\varepsilon }_0E^2}{2}S,\ F"=\frac{\varepsilon_0E^2}{2}S.$

Пример 2

Задание: Плоский конденсатор частично погружен в жидкий диэлектрик (рис.1). При зарядке конденсатора жидкость втягивается в конденсатор. Вычислить силу f, с которой поле действует на единицу горизонтальной поверхности жидкости. Считать, что пластины соединены с источником напряжения (U=const).

Обозначим через h- высоту столба жидкости, dh - изменение (увеличение) столба жидкости. Работа искомой силы при этом будет равна:

где S -- площадь горизонтального сечения конденсатора. Изменение электрического поля равно:

На пластины перейдет дополнительный заряд dq, равный:

где $a$ -- ширина пластин, учтем, что $E=\frac{U}{d}$ тогда работа источника тока равна:

\[\mathcal E dq=Udq=U\left(\varepsilon {\varepsilon }_0E-{\varepsilon }_0E\right)adh=E\left(\varepsilon {\varepsilon }_0E-{\varepsilon }_0E\right)d\cdot a\cdot dh=\left(\varepsilon {\varepsilon }_0E^2-{\varepsilon }_0E^2\right)Sdh\left(2.4\right).\]

Если считать, что сопротивление проводов мало, то $\mathcal E $=U. Используем закон сохранения энергии для систем с постоянным током при условии постоянства разности потенциалов :

\[\sum{\mathcal E Idt=\delta A+dW+\sum{RI^2dt\ \left(2.5\right).}}\]

\[\left(\varepsilon {\varepsilon }_0E^2-{\varepsilon }_0E^2\right)Sdh=Sfdh+\left(\frac{\varepsilon {\varepsilon }_0E^2}{2}-\frac{{\varepsilon }_0E^2}{2}\right)Sdh\to f=\frac{\varepsilon {\varepsilon }_0E^2}{2}-\frac{{\varepsilon }_0E^2}{2}\ .\]

Ответ: $f=\frac{\varepsilon {\varepsilon }_0E^2}{2}-\frac{{\varepsilon }_0E^2}{2}.$

Размер: px

Начинать показ со страницы:

Транскрипт

1 Тренировочный минимум по физике ФИЗИКА Тема Закон сохранения энергии в электрических цепях ВОПРОСЫ Рассматриваем электрические схемы, которые могут содержать батареи, резисторы, конденсаторы и катушки индуктивности Формулы для энергии конденсатора и катушки индуктивности Сформулировать закон сохранения энергии для электрической цепи Как определяется работа батареи? Когда она положительна? Когда она отрицательна? 4 На каких электрических элементах выделяется теплота? 5 Сформулировать Закон Джоуля-Ленца 6 Как определяется теплота Q, выделяющаяся на резисторе сопротивлением за любое время, если через него протекает ток I t? 7 Какой формулой определяется скорость изменения энергии конденсатора? 8 Какой формулой определяется скорость изменения энергии катушки индуктивности? ЗАДАЧИ Всевозможные задачи для схемы класса 5 рис Задача В схеме, показанной на рис, все элементы можно считать идеальными Параметры элементов указаны на рисунке До замыкания ключа ток в цепи отсутствовал Ключ K замыкают на некоторое время t, а затем размыкают) Чему равен ток через катушку сразу после размыкания ключа?) Какую работу совершит источник за все время опыта?) Какое количество теплоты выделится в схеме за все время опыта? 4) Какое количество теплоты выделится в схеме за время t? Задача В электрической схеме, изображённой на рис, все элементы можно считать идеальными До замыкания ключа ток в цепи отсутствовал Ключ K замыкают на некоторое время, а затем размыкают Оказалось, что за всё время опыта (те за время, пока ключ был замкнут и за время, пока ключ был разомкнут) в схеме выделилось количество теплоты Q Найдите время Задача В электрической схеме, изображённой на рис, все элементы можно считать идеальными До замыкания ключа ток в цепи отсутствовал Ключ K замыкают на некоторое время, а затем размыкают Оказалось, что за время, пока ключ был замкнут, и за время, пока ключ был разомкнут, в схеме выделились равные количества теплоты Какой заряд протёк через источник за время, пока ключ был замкнут? Какое количество теплоты выделилось в схеме за всё время опыта?

2 Задача 4 В электрической схеме, приведённой на рис, все элементы идеальные, ключ K разомкнут Индуктивность катушки, сопротивление резистора, ЭДС батареи Ключ K замыкают За первые секунд после замыкания ключа K батарея совершила работу на 5% меньшую, чем работа, которую она совершила за последующие секунд) Определить время) Какое количество теплоты выделится в схеме за время 4 после замыкания ключа K? Задача 5 В электрической схеме, изображённой на рис, все элементы можно считать идеальными Параметры элементов указаны на рисунке До замыкания ключа ток в цепи отсутствовал Ключ K замыкают на некоторое время, а затем размыкают Оказалось, что после размыкания ключа в цепи выделилось в два раза больше теплоты, чем при замкнутом ключе Найти отношение заряда, протёкшего через источник при замкнутом ключе, к заряду, протёкшему через резистор после размыкания ключа Задача 6 В электрической схеме, изображённой на рис, все элементы можно считать идеальными Параметры элементов указаны на рисунке До замыкания ключа ток в цепи отсутствовал Ключ K замыкают на некоторое время, а затем размыкают Оказалось, что заряд, протёкший через катушку при замкнутом ключе, в 4 раза больше заряда, протёкшего через катушку после размыкания ключа Определить время Найти отношение теплоты, выделившейся в цепи после размыкания ключа, к теплоте, выделившейся в цепи при замкнутом ключе Задача 7 Электрическая цепь состоит из идеальной батарейки с ЭДС, катушки индуктивностью, конденсатора ёмкостью C и резистора с неизвестным сопротивлением (рис справа) Ключ K замыкают на время, а затем размыкают За время, пока ключ был замкнут, через резистор протёк заряд q) Какое количество теплоты выделилось в цепи за время, пока ключ был замкнут?) Какое количество теплоты выделилось в цепи после размыкания ключа? Схемы - классов Задача 8 В электрической цепи, изображённой на рис слева все элементы идеальные Конденсатор первоначально не заряжен, ключ K разомкнут Ключ K замыкают, а затем размыкают в момент, когда напряжение на конденсаторе становится равным Известно, что пока ключ K был замкнут, через резистор сопротивлением протёк заряд 6 C Сколько теплоты выделилось в схеме, пока ключ K был замкнут? Задача 9 Какое количество теплоты выделится на резисторе в схеме, изображённой на рис справа, после перемещения ключа K из положения в положение? Внутренним сопротивлением батареи пренебречь Задача В электрической цепи, изображённой на рис слева все элементы идеальные Конденсатор первоначально заряжен до напряжения, ключ K разомкнут Ключ K замыкают) Определить изменение энергии конденсатора) Определить работу, которую совершит батарея? В каком состоянии будет находиться батарея?) Какое количество теплоты выделится в схеме? 4) Чему равна наибольшая скорость изменения энергии конденсатора (наибольшая по модулю)?

3 Задача В электрической схеме, изображённой на рис справа, в начальный момент ключ K замкнут После размыкания ключа на резисторе выделяется количество теплоты Q) Какое количество теплоты выделится на резисторе?) Чему равна ЭДС батареи? Сопротивления, и и индуктивность катушки известны Внутренним сопротивлением батареи пренебречь Задача В схеме, изображенной на рис слева, при разомкнутом ключе K конденсатор ёмкостью C заряжен до напряжения U, а конденсатор ёмкостью C до напряжения U Ключ K замыкают) Чему будет равен ток в цепи сразу после замыкания ключа K (указать направление)?) Определить скорость изменения энергии конденсатора ёмкостью C сразу после замыкания ключа K?) Определить величину и знак заряда левой обкладки конденсатора ёмкостью C в установившемся режиме? 4) Какой заряд протечёт через резистор сопротивлением (указать направление)? 5) Найти изменение энергии конденсатора ёмкостью C? 6) Какое количество теплоты выделится в схеме? 7) Какое количество теплоты выделится на резисторе сопротивлением? Задача В цепи, показанной на рис справа, конденсатор ёмкостью C заряжен до напряжения U, а конденсатор ёмкостью C до напряжения U (рис справа) Одноимённо заряженные обкладки соединены резистором сопротивлением Ключ K замыкают на некоторое время, а затем размыкают) Найти ток в цепи сразу после замыкания ключа K (указать направление)) Какое количество теплоты выделилось в цепи, если в момент размыкания ключа K ток в цепи был в раза меньше начального? Задача 4 В цепи, показанной на рис слева, все элементы идеальные В начальный момент времени ключи K и K разомкнуты, конденсаторы не заряжены Ключи одновременно замыкают) Найти начальный ток через каждую из батарей) Определить заряды конденсаторов в установившемся состоянии) Найти суммарную работу батарей 4) Какое количество теплоты выделится во всей схеме после замыкания ключей? Считать, что и Задача 5 Электрическая цепь состоит из батарейки с ЭДС и внутренним сопротивлением r, конденсатора ёмкостью C и резистора сопротивлением 5r Ключ K замыкают, а затем размыкают в момент, когда токи через конденсатор и резистор сравниваются по величине) Какую мгновенную мощность развивает источник непосредственно перед размыканием ключа?) Какое количество теплоты выделится в схеме после размыкания ключа?

4 Задача 6 В электрической схеме, представленной на рис слева, все элементы идеальные Ключ K первоначально разомкнут, токов в цепи нет Ключ K замыкают Известно, что за время пока в цепи устанавливались токи, в цепи выделилось количество теплоты Q Определить величины зарядов, протёкших через каждую из катушек за это время Задача 7 Электрическая цепь состоит из катушки индуктивностью, резистора сопротивлением, батарейки с ЭДС и неизвестным внутренним сопротивлением (рис*) Ключ K на некоторое время замыкают, а затем размыкают За время, пока ключ был замкнут, в цепи выделилось количество теплоты Q, а после размыкания ключа в цепи выделилось количество Q) Найдите ток через катушку в момент размыкания ключа) Найдите заряд, протекший через катушку за время, пока ключ был замкнут Задача 8 Электрическая цепь состоит из катушки индуктивностью, резистора сопротивлением, батарейки с ЭДС и неизвестным внутренним сопротивлением (рис слева) Ключ K на некоторое время замыкают, а затем размыкают За время, пока ключ был замкнут, через источник протек заряд q, а в катушке запаслась энергия W) Найти количество теплоты, выделившееся в цепи, пока ключ был замкнут) Какой заряд протёк через катушку при замкнутом ключе? Задача 9 В электрической схеме, предсталенной на рис справа, ключ K замкнут Ключ K размыкают После этого батарея с ЭДС совершила работу A, а количество теплоты, выделившееся в цепи, равно Q) Найти ёмкость конденсатора C) Найти индуктивность катушки ЭДС батарей и сопротивления резисторов считать заданными Считать, что Задача Электрическая цепь состоит из идеальной батарейки с ЭДС, плоского конденсатора и резистора сопротивлением В конденсатор параллельно обкладкам вставлена диэлектрическая пластина, занимающая половину объёма конденсатора (рис слева) Диэлектрическая проницаемость диэлектрика равна Ёмкость воздушного конденсатора равна C Пластину быстро вынимают) Какую механическую работу A мех следует совершить, чтобы быстро вынуть пластину из конденсатора?) Какое количество теплоты Q выделится в схеме после того, как вынули пластину? Задача Электрическая цепь состоит из идеальной батарейки с ЭДС, плоского конденсатора и резистора сопротивлением В конденсатор параллельно обкладкам вставлена проводящая пластина, занимающая половину объёма конденсатора (рис справа) Ёмкость воздушного конденсатора равна C Пластину быстро вынимают) Какую механическую работу A мех следует совершить, чтобы быстро вынуть пластину из конденсатора?) Какое количество теплоты Q выделится в схеме после того, как вынули пластину?

5 Энергия конденсатора: W C CU qu q C ОТВЕТЫ ВОПРОСЫ I ФI Ф Энергия катушки: W, где Ф магнитный поток, пронизывающий катушку Работа A Б всех батарей, включенных в цепь, идёт на выделение теплоты Q в электрической схеме и на изменение W энергии этой схемы: AБ Q W Энергия схемы равна сумме энергий всех конденсаторов и всех катушек индуктивности AБ q*, где q * модуль протёкшего заряда через батарею Работа батареи положительна (ставится знак «+»), если батарейка находится в рабочем режиме, и отрицательна (ставится знак), если батарейка находится в состоянии перезарядки 4 Только на резисторах 5 Если через резистор сопротивлением протекает постоянный ток I, то количество теплоты, выделяющееся U за время, равно Q I U I, где U I U t 6 Q I t t t U t I tt, где суммирование ведётся по всем малым отрезкам времени t за промежуток времени W t U t I t P t, где знак «+» ставится, если конденсатор заряжается, а знак ставится, если 7 C C C C конденсатор разряжается 8 W t U t I t, где U t t I t I t ЗАДАЧИ) t) t Задача t) t t 4) t Задача Задача Q 4)) 4) 4C) 6 4) Задача 4 Задача 5 8)) Q4 5 5 Задача 6 Задача 7) 8 Q) 4 q Q) Q q) Q C Задача 8 Задача 9 4 C 9 C Задача C, батарея будет находиться в состоянии перезарядки) C q C, наибольшая скорость изменения энергии конденсатора будет в момент сразу после замыкания ключа

6 Q) Q Q) Задача Задача U) (против часовой стрелки) U) (знак «минус» показывает, что энергия конденсатора уменьшается в данный момент времени)) 4 CU 4) 9 CU (против часовой стрелки) 4 5) 45 CU 6) 7 8 CU 7) 9 4 CU) U) CU Задача Задача 4) I и I 7 5) qc C, qc C и q C C 6 74) AБ C) Q C 6 Задача 5 5)) 7r 98 C Задача 6 Q 9 q 4 8 и Q q 4 Q))) q W) Q Q Q q W A 8) C) Q A 9 4)) Aмех Aмех 8 C) C) Q 8 Q C C Задача 7 Задача 8 Задача 9 Задача Задача Составитель: МА Пенкин преподаватель ФЗФТШ при МФТИ


И. В. Яковлев Материалы по физике MathUs.ru Количество теплоты. Конденсатор В данном листке рассматриваются задачи на расчёт количества теплоты, которое выделяется в цепях, состоящих из резисторов и конденсаторов.

И. В. Яковлев Материалы по физике MathUs.ru Количество теплоты. Катушка В данном листке рассматриваются задачи на расчёт количества теплоты, которое выделяется в цепях, состоящих из резисторов и катушек

И. В. Яковлев Материалы по физике MathUs.ru Содержание Соединения конденсаторов 1 Всероссийская олимпиада школьников по физике................... 3 2 Московская физическая олимпиада...........................

005-006 уч. год., кл. Физика. Электростатика. Законы постоянного тока. Контрольные вопросы. По какой причине силовые линии электрического поля не могут пересекаться?. В двух противоположных вершинах квадрата

И. В. Яковлев Материалы по физике MathUs.ru Содержание Диод и конденсаторы 1 Идеальный диод...................................... 1 2 Неидеальный диод..................................... 2 1 Идеальный

И. В. Яковлев Материалы по физике MathUs.ru Электромагнитные колебания Задача 1. (МФО, 2014, 11) Заряженный конденсатор начинает разряжаться через катушку индуктивности. За две миллисекунды его электрический

5. Электрические колебания Вопросы. Дифференциальное уравнение, описывающее свободные колебания заряда конденсатора в колебательном контуре, имеет вид Aq + Bq = 0, где A и B известные положительные постоянные.

Методика обучения решению разноуровневых задач на примере темы Конденсаторы. От простого к сложному. Сокалина Александра Николаевна МБОУ СОШ 6 Линия 1 Актуализация знаний Конденсатор; Емкость конденсатора

И. В. Яковлев Материалы по физике MathUs.ru Самоиндукция Пусть через катушку протекает электрический ток I, изменяющийся со временем. Переменное магнитное поле тока I порождает вихревое электрическое поле,

Задания А24 по физике 1. На графике показана зависимость от времени силы переменного электрического тока I, протекающего через катушку индуктивностью 5 мгн. Чему равен модуль ЭДС самоиндукции, действующей

Занятие 8. Колебательный контур. Сохранение энергии. 1. В идеальном колебательном контуре максимальный ток в цепи равен I 0. Найдите максимальный заряд на конденсаторе с ёмкостью C, если индуктивность

И. В. Яковлев Материалы по физике MathUs.ru Подвижная пластина Задача 1. (МФТИ, 2004) В схеме, представленной на рисунке, батарея с постоянной ЭДС E подключена через резистор к двум проводящим одинаковым

Потенциал 1.60. В однородном электрическом поле с напряженностью Е = 1 кв/м перемещают заряд q = 50 нкл на расстояние l = 12 см под углом = 60 0 к силовым линиям. Определите работу А поля при перемещении

С1.1. На фотографии изображена электрическая цепь, состоящая из резистора, реостата, ключа, цифровых вольтметра, подключенного к батарее, и амперметра. Используя законы постоянного тока, объясните, как

εдемонстрационный вариант ЕГЭ 2019 г. задание 18. Электрическая цепь на рисунке состоит из источника тока с ЭДС ε и внутренним сопротивлением r и внешней цепи из двух одинаковых резисторов сопротивлением

В схеме на рисунке сопротивление резистора и полное сопротивление реостата равны R, ЭДС батарейки равна E, её внутреннее сопротивление ничтожно (r = 0). Как ведут себя (увеличиваются, уменьшаются, остаются

14. ЭЛЕКТРОЕМКОСТЬ. КОНДЕНСАТОРЫ 14.1 Что называется электроемкостью уединенного проводника? 14.2 В каких единицах измеряется электроемкость? 14.3 Как вычисляется электроемкость уединенной сферы, проводящего

Решения и критерии оценивания Задача 1 Колесо обозрения радиусом R = 60 м вращается с постоянной угловой скоростью в вертикальной плоскости, совершая полный оборот за время T = 2 мин. В момент, когда пол

Колебательный контур состоит из катушки индуктивности и конденсатора. В нём наблюдаются гармонические электромагнитные колебания с периодом Т = 5 мс. В начальный момент времени заряд конденсатора максимален

Можаев Виктор Васильевич Кандидат физико-математических наук, доцент кафедры общей физики Московского физико-техническиго института (МФТИ). Нелинейные элементы в электрических цепях В статье на конкретных

Олимпиада «Физтех» по физике 217 Класс 11 Билет 11-3 Шифр 1. На наклоненной под углом (cos 3/ 4) к горизонту поверхности лежит брусок, прикрепленный к упругой невесомой и достаточно длинной пружине (см.

Занятие 5. Конденсаторы.. Как изменится емкость плоского воздушного конденсатора, если площадь обкладок уменьшить в раза, а расстояние между ними увеличить в раза?. Проводящий шар с зарядом q имеет потенциал

Физика 15 Можаев Виктор Васильевич Кандидат физико-математических наук, доцент кафедры общей физики Московского физико-технического института (МФТИ), член редколлегии журнала «Квант» Переходные процессы

И. В. Яковлев Материалы по физике MathUs.ru Самоиндукция Темы кодификатора ЕГЭ: самоиндукция, индуктивность, энергия магнитного поля. Самоиндукция является частным случаем электромагнитной индукции. Оказывается,

На рисунке показана цепь постоянного тока. Внутренним сопротивлением источника тока можно пренебречь. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать (

Домашнее задание по теме: «Электрические колебания» Вариант. В колебательном контуре индуктивность катушки L = 0, Гн. Величина тока изменяется по закону I(t) = 0,8sin(000t + 0,3), где t время в секундах,

«ЗАКОНЫ ПОСТОЯННОГО ТОКА». Электрическим током называют упорядоченное направленное движение заряженных частиц. Для существования тока необходимы два условия: Наличие свободных зарядов; Наличие внешнего

Занятие 19 Постоянный ток. Соединения проводников Задача 1 Перенос вещества происходит в случае прохождения электрического тока через: 1) Металлы и полупроводники 2) Полупроводники и электролиты 3) Газы

РАБОТА 4 ИССЛЕДОВАНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЦЕПИ, СОДЕРЖАЩЕЙ РЕЗИСТОР И КОНДЕНСАТОР Цель работы: изучение закона изменения напряжения при разрядке конденсатора, определение постоянной времени R-цепи и

Работа электрического тока, мощность, закон Джоуля Ленца 1. Чему равно время прохождения тока силой 5 А по проводнику, если при напряжении на его концах 120 В в проводнике выделяется количество теплоты,

Электрические колебания Примеры решения задач Пример В схеме изображенной на рисунке ключ первоначально находившийся в положении в момент времени t переводят в положение Пренебрегая сопротивлением катушки

Физика. 0 класс. Демонстрационный вариант (90 минут) Диагностическая тематическая работа по подготовке к ЕГЭ по ФИЗИКЕ Физика. 0 класс. Демонстрационный вариант (90 минут) Часть К заданиям 4 даны четыре

Олимпиада «Физтех» по физике 7 Класс Билет -3 Шифр (заполняется секретарём) На наклоненной под углом (cos 3/ 4) к горизонту поверхности лежит брусок прикрепленный к упругой невесомой и достаточно длинной

Электродинамика 1. При подключении резистора с неизвестным сопротивлением к источнику тока с ЭДС 10 В и внутренним сопротивлением 1 Ом напряжение на выходе источника тока равно 8 В. Чему равна сила тока

Физика. 0 класс. Демонстрационный вариант 3 (90 минут) Диагностическая тематическая работа 3 по подготовке к ЕГЭ по ФИЗИКЕ по теме «Электродинамика» (электростатика, постоянный ток и магнитное поле тока)

Государственное высшее учебное заведение «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра физики ОТЧЁТ по лабораторной работе ОПРЕДЕЛЕНИЕ ЭЛЕКТРОЁМКОСТИ КОНДЕНСАТОРА И БАТАРЕИ КОНДЕНСАТОРОВ Выполнил

Вариант 1 1. Колебательный контур состоит из катушки индуктивностью 0,2 мгн и конденсатора площадью пластин 155 см 2, расстояние между которыми 1,5 мм. Зная, что контур резонирует на длину волны 630 м,

Ёмкость. Конденсаторы Вариант 1 1. Определите радиус шара, обладающего ѐмкостью 1 пф. 3. При введении в пространство между пластинами заряженного воздушного конденсатора диэлектрика напряжение на конденсаторе

И. В. Яковлев Материалы по физике MthUs.ru Правила Кирхгофа В статье «ЭДС. Закон Ома для полной цепи» мы вывели закон Ома для неоднородного участка цепи (то есть участка, содержащего источник тока): ϕ

С1.1. Около небольшой металлической пластины, укрепленной на изолирующей подставке, подвесили на шелковой нити легкую металлическую незаряженную гильзу. Когда пластину подсоединили к клемме высоковольтного

1 Государственное бюджетное общеобразовательное учреждение Средняя общеобразовательная школа 447 Санкт-Петербург, Курортный район, п. Молодежное Решение задач уровня «С» ЕГЭ по физике «Расчет сложных электрических

Отложенные задания (25) В области пространства, где находится частица с массой 1 мг и зарядом 2 10 11 Кл, создано однородное горизонтальное электрическое поле. Какова напряжённость этого поля, если из

Электричество и магнетизм, часть 2 1. Конденсатор колебательного контура подключен к источнику постоянного напряжения. Графики и представляют зависимость от времени t физических величин, характеризующих

18.Электродинамика (установление соответствия между графиками и физическими величинами между физическими величинами) 1.Конденсатор, на который подано напряжение U, зарядился до максимального заряда q,

Мастер-класс «Электродинамика. Постоянный ток. Работа и мощность тока». 1. По проводнику течёт постоянный электрический ток. Величина заряда, проходящего через проводник, возрастает с течением времени

Задание 1. Установите соответствие между физическими величинами, описывающими протекание постоянного тока через резистор, и формулами для их расчёта. В формулах использованы обозначения: R сопротивление

Лекц ия 26 Закон Ома для цепи переменного тока Вопросы. Индуктивность и емкость в цепи переменного тока. Метод векторных диаграмм. Закон Ома для цепи переменного тока. Резонанс в последовательной и параллельной

1. Два положительных заряда q 1 и q 2 находятся в точках с радиус-векторами r 1 и r 2. Найти отрицательный заряд q 3 и радиус-вектор r 3 точки, в которую его надо поместить, чтобы сила, действующая на

С1.1. На рисунке приведена электрическая цепь, состоящая из гальванического элемента, реостата, трансформатора, амперметра и вольтметра. В начальный момент времени ползунок реостата установлен посередине

Электростатика Закон Кулона F 4 r ; F r r 4 r где F - сила взаимодействия точечных зарядов q и q ; - E диэлектрическая проницаемость среды; Е напряженность электростатического поля в вакууме; Е напряженность

Решения задач заключительного этапа олимпиады «Высшая проба» по электронике, 04/05 учебный год класс Для измерения силы тока и падения напряжения в личных цепях электронных схем применяют амперметры и

С1 «ПОСТОЯННЫЙ ТОК» На рисунке показана электрическая цепь, содержащая источник тока (с отличным от нуля внутренним сопротивлением), два резистора, конденсатор, ключ К, а также амперметр и идеальный вольтметр.

Региональная контрольная работа по физике (профильный уровень). СПЕЦИФИКАЦИЯ Каждый вариант работы состоит из двух частей и включает в себя 5 заданий, различающихся формой и уровнем сложности. Часть 1

1 Постоянный электрический ток Справочные сведения. ОПРЕДЕЛЕНИЕ СИЛЫ ТОКА Пусть через некоторую поверхность, площадь которой S, перпендикулярно ей, за время проходит заряд q. Тогда силой тока называется

Вариант 1 При выполнении заданий части 1 запишите номер выполняемого задания, а затем номер выбранного ответа или ответ. Единицы физических величин писать не нужно. 1. По проводнику течѐт постоянный электрический

ДА Ивашкина, «Расчет параметров процессов, происходящих в цепях постоянного тока, содержащих катушки индуктивности» «Физика Приложение к газете «Первое сентября»», 9/00 г, стр 4-9 К статье добавлены полные

ЗАДАНИЯ, РЕШЕНИЯ И КРИТЕРИИ ОЦЕНКИ ВТОРОГО ЭТАПА ОЛИМПИАДЫ ПО ЭЛЕКТРОНИКЕ ДЛЯ ШКОЛЬНИКОВ КЛАСС.. При замыкании батареи элементов на сопротивление 9 Ом в цепи течет ток А. Какую максимальную полезную мощность

МИНИСТЕРСТВО ОБРАЗОВАНИЯ СТАВРОПОЛЬСКОГО КРАЯ ГОУ СПО "Минераловодский колледж железнодорожного транспорта" С.А. Иванская ЭЛЕКТРОТЕХНИКА Методические рекомендации по освоению теоретического материала и

ЗАДАЧИ С4 Тема: «Электродинамика» Полное решение задачи должно включать законы и формулы, применение которых необходимо и достаточно для решения, а также математические преобразования, расчеты с численным

) На рисунке показано расположение трёх неподвижных точечных электрических зарядов q, q и 3q. Результирующая кулоновская сила, действующая на заряд 3q, q q 3q r r) направлена вправо) направлена влево

Электричество и магнетизм Электростатика Электростатика - это раздел электродинамики в котором изучаются свойства и взаимодействия неподвижных электрически заряженных тел. При решении задач на электростатику

Нурушева Марина Борисовна старший преподаватель кафедры физики 023 НИЯУ МИФИ Электрический ток Электрический ток это направленное (упорядоченное) движение заряженных частиц. Условия существования электрического

Постоянный электрический ток. Сила тока Постоянный электрический ток. Напряжение Закон Ома для участка цепи Электрическое сопротивление. Удельное сопротивление вещества Электродвижущая сила. Внутреннее

Минимум по физике для учащихся 10-х классов за 2 полугодие. Учитель физики - Турова Мария Васильевна e-mail: [email protected] Список литературы: 1. Учебник физики 10 класс. Авторы: Г.Я.Мякишев, Б.Б.

ЗАДАЧИ С1 Темы: все разделы общей физики от «Механики» до «Квантовой физики» В задачах С1 следует записать развернутый ответ, поясняющий физические процессы, описанные в задаче, и ход ваших рассуждений.

Олимпиада «Курчатов» 016 17 учебный год Заключительный этап 11 класс Задача 1 (5 баллов) Небольшая шайба массой m скатывается с вершины гладкой горки массой M и высотой H. Горка находится на гладкой поверхности.

Колебания. Лекция 3 Генератор переменного тока Для пояснения принципа действия генератора переменного тока рассмотрим сначала, что происходит при вращении плоского витка провода в однородном магнитном