Чему был равен первоначальный импульс тела. Импульс. Закон сохранения импульса. Закон сохранения L¯

Если на тело массой m за определенный промежуток времени Δ t действует сила F → , тогда следует изменение скорости тела ∆ v → = v 2 → - v 1 → . Получаем, что за время Δ t тело продолжает движение с ускорением:

a → = ∆ v → ∆ t = v 2 → - v 1 → ∆ t .

Основываясь на основном законе динамики, то есть втором законе Ньютона, имеем:

F → = m a → = m v 2 → - v 1 → ∆ t или F → ∆ t = m v 2 → - m v 1 → = m ∆ v → = ∆ m v → .

Определение 1

Импульс тела , или количество движения – это физическая величина, равная произведению массы тела на скорость его движения.

Импульс тела считается векторной величиной, которая измеряется в килограмм-метр в секунду (к г м / с) .

Определение 2

Импульс силы – это физическая величина, равняющаяся произведению силы на время ее действия.

Импульс относят к векторным величинам. Существует еще одна формулировка определения.

Определение 3

Изменение импульса тела равняется импульсу силы.

При обозначении импульса p → второй закон Ньютона записывается как:

F → ∆ t = ∆ p → .

Данный вид позволяет формулировать второй закон Ньютона. Сила F → является равнодействующей всех сил, действующих на тело. Равенство записывается как проекции на координатные оси вида:

F x Δ t = Δ p x ; F y Δ t = Δ p y ; F z Δ t = Δ p z .

Рисунок 1 . 16 . 1 . Модель импульса тела.

Изменение проекции импульса тела на любую из трех взаимно перпендикулярных осей равно проекции импульса силы на эту же ось.

Определение 4

Одномерное движение – это движение тела по одной из координатный осей.

Пример 1

На примере рассмотрим свободное падение тела с начальной скоростью v 0 под действием силы тяжести за промежуток времени t . При направлении оси O Y вертикально вниз импульс силы тяжести F т = mg , действующий за время t , равняется m g t . Такой импульс равняется изменению импульса тела:

F т t = m g t = Δ p = m (v – v 0) , откуда v = v 0 + g t .

Запись совпадает с кинематической формулой определения скорости равноускоренного движения. По модулю сила не изменяется из всего интервала t . Когда она изменяема по величине, тогда формула импульса требует подстановки среднего значения силы F с р из временного промежутка t . Рисунок 1 . 16 . 2 показывает, каким образом определяется импульс силы, которая зависит от времени.

Рисунок 1 . 16 . 2 . Вычисление импульса силы по графику зависимости F (t)

Необходимо выбрать на временной оси интервал Δ t , видно, что сила F (t) практически неизменна. Импульс силы F (t) Δ t за промежуток времени Δ t будет равняться площади заштрихованной фигуры. При разделении временной оси на интервалы на Δ t i на промежутке от от 0 до t , сложить импульсы всех действующих сил из этих промежутков Δ t i , тогда суммарный импульс силы будет равняться площади образования при помощи ступенчатой и временной осей.

Применив предел (Δ t i → 0) , можно найти площадь, которая будет ограничиваться графиком F (t) и осью t . Использование определения импульса силы по графику применимо с любыми законами, где имеются изменяющиеся силы и время. Данное решение ведет к интегрированию функции F (t) из интервала [ 0 ; t ] .

Рисунок 1 . 16 . 2 показывает импульс силы, находящийся на интервале от t 1 = 0 с до t 2 = 10 .

Из формулы получим, что F с р (t 2 - t 1) = 1 2 F m a x (t 2 - t 1) = 100 Н · с = 100 к г · м / с.

То есть, из примера видно F с р = 1 2 F m a x = 10 Н.

Имеются случаи, когда определение средней силы F с р возможно при известных времени и данных о сообщенном импульсе. При сильной ударе по мячу с массой 0 , 415 к г можно сообщить скорость, равную v = 30 м / с. Приблизительным временем удара является значение 8 · 10 – 3 с.

Тогда формула импульса приобретает вид:

p = m v = 12 , 5 к г · м / с.

Чтобы определить среднюю силу F с р во время удара, необходимо F с р = p ∆ t = 1 , 56 · 10 3 Н.

Получили очень большое значение, которое равняется телу массой 160 к г.

Когда движение происходит по криволинейной траектории, то начальное значение p 1 → и конечное
p 2 → могут быть различны по модулю и по направлению. Для определения импульса ∆ p → применяют диаграмму импульсов, где имеются векторы p 1 → и p 2 → , а ∆ p → = p 2 → - p 1 → построен по правилу параллелограмма.

Пример 2

Для примера приводится рисунок 1 . 16 . 2 , где нарисована схема импульсов мяча, отскакивающего от стены. При подаче мяч с массой m со скоростью v 1 → налетает на поверхность под углом α к нормали и отскакивает со скоростью v 2 → с углом β . При ударе в стену мяч подвергался действию силы F → , направленной также, как и вектор ∆ p → .

Рисунок 1 . 16 . 3 . Отскакивание мяча от шероховатой стенки и диаграмма импульсов.

Если происходит нормальное падение мяча с массой m на упругую поверхность со скоростью v 1 → = v → , тогда при отскоке она изменится на v 2 → = - v → . Значит, за определенный промежуток времени импульс изменится и будет равен ∆ p → = - 2 m v → . Используя проекции на О Х, результат запишется как Δ p x = – 2 m v x . Из рисунка 1 . 16 . 3 видно, что ось О Х направлена от стенки, тогда следует v x < 0 и Δ p x > 0 . Из формулы получим, что модуль Δ p связан с модулем скорости, который принимает вид Δ p = 2 m v .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

В некоторых случаях удается исследовать взаимодействие тел, не используя выражения для сил, действующих между телами. Это возможно благодаря тому, что существуют физические величины, которые остаются неизменными (сохраняются) при взаимодействии тел. В этой главе мы рассмотрим две такие величины – импульс и механическую энергию.
Начнем с импульса.

Физическую величину , равную произведению массы тела m на его скорость , называют импульсом тела (или просто импульсом):

Импульс – векторная величина. Модуль импульса p = mv, а направление импульса совпадает с направлением скорости тела. Единицей импульса является 1 (кг * м)/с.

1. По шоссе в направлении на север со скоростью 40 км/ч едет грузовик массой 3 т. В каком направлении и с какой скоростью должен ехать легковой автомобиль массой 1 т, чтобы его импульс был равен импульсу грузовика?

2. Мяч массой 400 г свободно падает без начальной скорости с высоты 5 м, После удара мяч отскакивает вверх, причем модуль скорости мяча в результате удара не изменяется.
а) Чему равен и как направлен импульс мяча непосредственно перед ударом?
б) Чему равен и как направлен импульс мяча сразу после удара?
в) Чему равно и как направлено изменение импульса мяча в результате удара? Найдите изменение импульса графически.
Подсказка. Если импульс тела был равен 1 , а стал равен 2 , то изменение импульса ∆ = 2 – 1 .

2. Закон сохранения импульса

Важнейшим свойством импульса является то, что при определенных условиях суммарный импульс взаимодействующих тел остается неизменным (сохраняется).

Поставим опыт

Две одинаковые тележки могут катиться по столу вдоль одной прямой практически без трения. (Этот опыт можно поставить при наличии современного оборудования.) Отсутствие трения – важное условие нашего опыта!

Установим на тележках защелки, благодаря которым тележки после столкновения движутся как одно тело. Пусть правая тележка вначале покоится, а левой толчком сообщим скорость 0 (рис. 25.1, а).

После столкновения тележки движутся вместе. Измерения показывают, что их общая скорость в 2 раза меньше, чем начальная скорость левой тележки (25.1, б).

Обозначим массу каждой тележки m и сравним суммарные импульсы тележек до и после столкновения.

Мы видим, что суммарный импульс тележек остался неизменным (сохранился).

Может быть, это справедливо только тогда, когда тела после взаимодействия движутся как единое целое?

Поставим опыт
Заменим защелки на упругую пружину и повторим опыт (рис. 25.2).

На этот раз левая тележка остановилась, а правая приобрела скорость, равную начальной скорости левой тележки.

3. Докажите, что и в этом случае суммарный импульс тележек сохранился.

Может быть, это справедливо только тогда, когда массы взаимодействующих тел равны?

Поставим опыт
Закрепим на правой тележке еще одну такую же тележку и повторим опыт (рис. 25.3).

Теперь после столкновения левая тележка стала двигаться в противоположном направлении (то есть влево) со скоростью, равной –/3, а сдвоенная тележка стала двигаться вправо со скоростью 2/3.

4. Докажите, что и в этом опыте суммарный импульс тележек сохранился.

Чтобы определить, при каких условиях суммарный импульс тел сохраняется, введем представление о замкнутой системе тел. Так называют систему тел, которые взаимодействуют только друг с другом (то есть не взаимодействуют с телами, не входящими в эту систему).

В точности замкнутых систем тел в природе не существует – хотя бы потому, что невозможно «отключить» силы всемирного тяготения.

Но во многих случаях систему тел с хорошей точностью можно считать замкнутой. Например, когда внешние силы (силы, действующие на тела системы со стороны других тел) уравновешивают друг друга или ими можно пренебречь.

Именно так и было в наших опытах с тележками: действующие на них внешние силы (сила тяжести и сила нормальной реакции) уравновешивали друг друга, а силой трения можно было пренебречь, Поэтому скорости тележек изменялись только вследствие их взаимодействия друг с другом.

Описанные опыты, как и многие другие, подобные им, свидетельствуют о том, что выполняется
закон сохранения импульса: векторная сумма импульсов тел, составляющих замкнутую систему, не изменяется при любых взаимодействиях между телами системы :
Закон сохранения импульса выполняется только в инерциальных системах отсчета.

Закон сохранения импульса как следствие законов Ньютона

Покажем на примере замкнутой системы двух взаимодействующих тел, что закон сохранения импульса – следствие второго и третьего законов Ньютона.

Обозначим массы тел m 1 и m 2 , а их начальные скорости 1 и 2 . Тогда векторная сумма импульсов тел

Пусть в течение промежутка времени ∆t взаимодействующие тела двигались с ускорениями 1 и 2 .

5. Объясните, почему изменение суммарного импульса тел можно записать в виде

Подсказка. Воспользуйтесь тем, что для каждого тела ∆ = m∆, а также тем, что ∆ = ∆t.

6. Обозначим 1 и 2 силы, действующие соответственно на первое и второе тело. Докажите, что

Подсказка. Воспользуйтесь вторым законом Ньютона и тем, что система замкнута, вследствие чего ускорения тел обусловлены только силами, с которыми эти тела действуют друг на друга.

7. Докажите, что

Подсказка. Воспользуйтесь третьим законом Ньютона.

Итак, изменение суммарного импульса взаимодействующих тел равно нулю. А если изменение некоторой величины равно нулю, то это означает, что эта величина сохраняется.

8. Почему из приведенного рассуждения следует, что закон сохранения импульса выполняется только в инерциальных системах отсчета?

3. Импульс силы

Есть такая поговорка: «Знать бы, где упадешь, – соломки постелил бы». А зачем нужна «соломка»? Почему спортсмены на тренировках и соревнованиях падают или прыгают на мягкие маты, а не на твердый пол? Почему после прыжка надо приземляться на согнутые ноги, а не на выпрямленные? Зачем в автомобилях нужны ремни и подушки безопасности?
Мы сможем ответить на все эти вопросы, познакомившись с понятием «импульс силы».

Импульсом силы называют произведение силы на промежуток времени ∆t, в течение которого действует эта сила.

Название «импульс силы» не случайно «перекликается» с понятием «импульс». Рассмотрим случай, когда на тело массой m в течение промежутка времени ∆t действует сила .

9. Докажите, что изменение импульса тела ∆ равно импульсу действующей на это тело силы:

Подсказка. Воспользуйтесь тем, что ∆ = m∆, и вторым законом Ньютона.

Перепишем формулу (6) в виде

Эта формула представляет собой другую форму записи второго закона Ньютона. (Именно в таком виде сформулировал этот закон сам Ньютон.) Из нее следует, что на тело действует большая сила, если его импульс существенно изменяется за очень краткий промежуток времени ∆t.

Вот почему при ударах и столкновениях возникают большие силы: удары и столкновения характеризуются как раз малым интервалом времени взаимодействия.

Чтобы ослабить силу удара или уменьшить силы, возникающие при столкновении тел, надо удлинить промежуток времени, в течение которого происходит удар или столкновение.

10. Объясните смысл поговорки, приведенной в начале этого раздела, а также ответьте на другие вопросы, помещенные в том же абзаце.

11. Мяч массой 400 г ударился о стену и отскочил от нее с той же по модулю скоростью, равной 5 м/с. Перед самым ударом скорость мяча была направлена горизонтально. Чему равна средняя сила давления мяча на стену, если он соприкасался со стеной в течение 0,02 с?

12.Чугунная болванка массой 200 кг падает с высоты 1,25 м в песок и погружается в него на 5 см.
а) Чему равен импульс болванки непосредственно перед ударом?
б) Чему равно изменение импульса болванки за время удара?
в) Сколько времени длился удар?
г) Чему равна средняя сила удара?


Дополнительные вопросы и задания

13. Шарик массой 200 г движется со скоростью 2 м/с влево. Как должен двигаться другой шарик массой 100 г, чтобы суммарный импульс шариков был равен нулю?

14. Шарик массой 300 г равномерно движется по окружности радиусом 50 см со скоростью 2 м/с. Чему равен модуль изменения импульса шарика:
а) за один полный период обращения?
б) за половину периода обращения?
в) за 0,39 с?

15. Первая доска лежит на асфальте, а вторая такая же – на рыхлом песке. Объясните, почему в первую доску легче забить гвоздь, чем во вторую?

16. Пуля массой 10 г, летевшая со скоростью 700 м/с, пробила доску, после чего скорость пули стала равной 300 м/с. Внутри доски пуля двигалась в течение 40 мкс.
а) Чему равно изменение импульса пули вследствие прохождения сквозь доску?
б) С какой средней силой пуля действовала на доску при прохождении сквозь нее?

Темы кодификатора ЕГЭ: импульс тела, импульс системы тел, закон сохранения импульса.

Импульс тела - это векторная величина, равная произведению массы тела на его скорость:

Специальных единиц измерения импульса нет. Размерность импульса - это просто произведение размерности массы на размерность скорости:

Почему понятие импульса является интересным? Оказывается, с его помощью можно придать второму закону Ньютона несколько иную, также чрезвычайно полезную форму.

Второй закон Ньютона в импульсной форме

Пусть - равнодействующая сил, приложенных к телу массы . Начинаем с обычной записи второго закона Ньютона:

С учётом того, что ускорение тела равно производной вектора скорости, второй закон Ньютона переписывается следующим образом:

Вносим константу под знак производной:

Как видим, в левой части получилась производная импульса:

. ( 1 )

Соотношение ( 1 ) и есть новая форма записи второго закона Ньютона.

Второй закон Ньютона в импульсной форме. Производная импульса тела есть равнодействующая приложенных к телу сил.

Можно сказать и так: результирующая сила, действующая на тело, равна скорости изменения импульса тела.

Производную в формуле ( 1 ) можно заменить на отношение конечных приращений:

. ( 2 )

В этом случае есть средняя сила, действующая на тело в течение интервала времени . Чем меньше величина , тем ближе отношение к производной , и тем ближе средняя сила к своему мгновенному значению в данный момент времени.

В задачах, как правило, интервал времени достаточно мал. Например, это может быть время соударения мяча со стенкой, и тогда - средняя сила, действующая на мяч со стороны стенки во время удара.

Вектор в левой части соотношения ( 2 ) называется изменением импульса за время . Изменение импульса - это разность конечного и начального векторов импульса. А именно, если - импульс тела в некоторый начальный момент времени, - импульс тела спустя промежуток времени , то изменение импульса есть разность:

Подчеркнём ещё раз, что изменение импульса - это разность векторов (рис. 1 ):

Пусть, например, мяч летит перпендикулярно стенке (импульс перед ударом равен ) и отскакивает назад без потери скорости (импульс после удара равен ). Несмотря на то, что импульс по модулю не изменился (), изменение импульса имеется:

Геометрически эта ситуация показана на рис. 2 :

Модуль изменения импульса, как видим, равен удвоенному модулю начального импульса мяча: .

Перепишем формулу ( 2 ) следующим образом:

, ( 3 )

или, расписывая изменение импульса, как и выше:

Величина называется импульсом силы. Специальной единицы измерения для импульса силы нет; размерность импульса силы равна просто произведению размерностей силы и времени:

(Обратите внимание, что оказывается ещё одной возможной единицей измерения импульса тела.)

Словесная формулировка равенства ( 3 ) такова: изменение импульса тела равно импульсу действующей на тело силы за данный промежуток времени. Это, разумеется, снова есть второй закон Ньютона в импульсной форме.

Пример вычисления силы

В качестве примера применения второго закона Ньютона в импульсной форме давайте рассмотрим следующую задачу.

Задача. Шарик массы г, летящий горизонтально со скоростью м/с, ударяется о гладкую вертикальную стену и отскакивает от неё без потери скорости. Угол падения шарика (то есть угол между направлением движения шарика и перпендикуляром к стене) равен . Удар длится с. Найти среднюю силу,
действующую на шарик во время удара.

Решение. Покажем прежде всего, что угол отражения равен углу падения, то есть шарик отскочит от стены под тем же углом (рис. 3 ).

Согласно ( 3 ) имеем: . Отсюда следует, что вектор изменения импульса сонаправлен с вектором , то есть направлен перпендикулярно стене в сторону отскока шарика (рис. 5 ).

Рис. 5. К задаче

Векторы и
равны по модулю
(так как скорость шарика не изменилась). Поэтому треугольник, составленный из векторов , и , является равнобедренным. Значит, угол между векторами и равен , то есть угол отражения действительно равен углу падения.

Теперь заметим вдобавок, что в нашем равнобедренном треугольнике есть угол (это угол падения); стало быть, данный треугольник - равносторонний. Отсюда:

И тогда искомая средняя сила, действующая на шарик:

Импульс системы тел

Начнём с простой ситуации системы двух тел. А именно, пусть имеются тело 1 и тело 2 с импульсами и соответственно. Импульс системы данных тел - это векторная сумма импульсов каждого тела:

Оказывается, для импульса системы тел имеется формула, аналогичная второму закону Ньютона в виде ( 1 ). Давайте выведем эту формулу.

Все остальные объекты, с которыми взаимодействуют рассматриваемые нами тела 1 и 2, мы будем называть внешними телами. Силы, с которыми внешние тела действуют на тела 1 и 2, называем внешними силами. Пусть - результирующая внешняя сила, действующая на тело 1. Аналогично - результирующая внешняя сила, действующая на тело 2 (рис. 6 ).

Кроме того, тела 1 и 2 могут взаимодействовать друг с другом. Пусть тело 2 действует на тело 1 с силой . Тогда тело 1 действует на тело 2 с силой . По третьему закону Ньютона силы и равны по модулю и противоположны по направлению: . Силы и - это внутренние силы, действующие в системе.

Запишем для каждого тела 1 и 2 второй закон Ньютона в форме ( 1 ):

, ( 4 )

. ( 5 )

Сложим равенства ( 4 ) и ( 5 ):

В левой части полученного равенства стоит сумма производных, равная производной суммы векторов и . В правой части имеем в силу третьего закона Ньютона:

Но - это импульс системы тел 1 и 2. Обозначим также - это результирующая внешних сил, действующих на систему. Получаем:

. ( 6 )

Таким образом, скорость изменения импульса системы тел есть равнодействующая внешних сил, приложенных к системе. Равенство ( 6 ), играющее роль второго закона Ньютона для системы тел, мы и хотели получить.

Формула ( 6 ) была выведена для случая двух тел. Теперь обобщим наши рассуждения на случай произвольного количества тел в системе.

Импульсом системы тел тел называется векторная сумма импульсов всех тел, входящих в систему. Если система состоит из тел, то импульс этой системы равен:

Дальше всё делается совершенно так же, как и выше (только технически это выглядит несколько сложнее). Если для каждого тела записать равенства, аналогичные ( 4 ) и ( 5 ), а затем все эти равенства сложить, то в левой части мы снова получим производную импульса системы, а в правой части останется лишь сумма внешних сил (внутренние силы, попарно складываясь, дадут нуль ввиду третьего закона Ньютона). Поэтому равенство ( 6 ) останется справедливым и в общем случае.

Закон сохранения импульса

Система тел называется замкнутой, если действия внешних тел на тела данной системы или пренебрежимо малы, или компенсируют друг друга. Таким образом, в случае замкнутой системы тел существенно лишь взаимодействие этих тел друг с другом, но не с какими-либо другими телами.

Равнодействующая внешних сил, приложенных к замкнутой системе, равна нулю: . В этом случае из ( 6 ) получаем:

Но если производная вектора обращается в нуль (скорость изменения вектора равна нулю), то сам вектор не меняется со временем:

Закон сохранения импульса. Импульс замкнутой системы тел остаётся постоянным с течением времени при любых взаимодействиях тел внутри данной системы.

Простейшие задачи на закон сохранения импульса решаются по стандартной схеме, которую мы сейчас покажем.

Задача. Тело массы г движется со скоростью м/с по гладкой горизонтальной поверхности. Навстречу ему движется тело массы г со скоростью м/с. Происходит абсолютно неупругий удар (тела слипаются). Найти скорость тел после удара.

Решение. Ситуация изображена на рис. 7 . Ось направим в сторону движения первого тела.


Рис. 7. К задаче

Поскольку поверхность гладкая, трения нет. Поскольку поверхность горизонтальная, а движение происходит вдоль неё, сила тяжести и реакция опоры уравновешивают друг друга:

Таким образом, векторная сумма сил, приложенных к системе данных тел, равна нулю. Это значит, что система тел замкнута. Стало быть, для неё выполняется закон сохранения импульса:

. ( 7 )

Импульс системы до удара - это сумма импульсов тел:

После неупругого удара получилось одно тело массы , которое движется с искомой скоростью :

Из закона сохранения импульса ( 7 ) имеем:

Отсюда находим скорость тела, образовавшегося после удара:

Переходим к проекциям на ось :

По условию имеем: м/с, м/с, так что

Знак минус указывает на то, что слипшиеся тела двигаются в сторону, противоположную оси . Искомая скорость: м/с.

Закон сохранения проекции импульса

Часто в задачах встречается следующая ситуация. Система тел не является замкнутой (векторная сумма внешних сил, действующих на систему, не равна нулю), но существует такая ось , сумма проекций внешних сил на ось равна нулю в любой момент времени. Тогда можно сказать, что вдоль данной оси наша система тел ведёт себя как замкнутая, и проекция импульса системы на ось сохраняется.

Покажем это более строго. Спроектируем равенство ( 6 ) на ось :

Если проекция равнодействующей внешних сил обращается в нуль, , то

Следовательно, проекция есть константа:

Закон сохранения проекции импульса. Если проекция на ось суммы внешних сил, действующих на систему, равна нулю, то проекция импульса системы не меняется с течением времени.

Давайте посмотрим на примере конкретной задачи, как работает закон сохранения проекции импульса.

Задача. Мальчик массы , стоящий на коньках на гладком льду, бросает камень массы со скоростью под углом к горизонту. Найти скорость , с которой мальчик откатывается назад после броска.

Решение. Ситуация схематически показана на рис. 8 . Мальчик изображён прямогольником.


Рис. 8. К задаче

Импульс системы «мальчик + камень» не сохраняется. Это видно хотя бы из того, что после броска появляется вертикальная составляющая импульса системы (а именно, вертикальная составляющая импульса камня), которой до броска не было.

Стало быть, система, которую образуют мальчик и камень, не замкнута. Почему? Дело в том, что векторная сумма внешних сил не равна нулю во время броска. Величина больше, чем сумма , и за счёт этого превышения как раз и появляется вертикальная компонента импульса системы.

Однако внешние силы действуют только по вертикали (трения нет). Стало быть, сохраняется проекция импульса на горизонтальную ось . До броска эта проекция была равна нулю. Направляя ось в сторону броска (так что мальчик поехал в направлении отрицательной полуоси), получим.

Изучив законы Ньютона, мы видим, что с их помощью можно решить основные задачи механики, если нам известны все силы, действующие на тело. Есть ситуации, в которых определить эти величины затруднительно или вообще невозможно. Рассмотрим несколько таких ситуаций. При столкновении двух биллиардных шаров или автомобилей мы можем утверждать о действующих силах, что это их природа, здесь действуют силы упругости. Однако ни их модулей, ни их направлений мы точно установить не сможем, тем более что эти силы имеют крайне малое время действия. При движении ракет и реактивных самолетов мы также мало что можем сказать о силах, приводящих указанные тела в движение. В таких случаях применяются методы, позволяющие уйти от решения уравнений движения, а сразу воспользоваться следствиями этих уравнений. При этом вводятся новые физические величины. Рассмотрим одну из этих величин, называемую импульсом тела

Стрела, выпускаемая из лука. Чем дольше продолжается контакт тетивы со стрелой (∆t), тем больше изменение импульса стрелы (∆), а следовательно, тем выше ее конечная скорость.

Два сталкивающихся шарика. Пока шарики находятся в контакте, они действуют друг на друга с равными по модулю силами, как учит нас третий закон Ньютона. Значит, изменения их импульсов также должны быть равны по модулю, даже если массы шариков не равны.

Проанализировав формулы, можно сделать два важных вывода:

1. Одинаковые силы, действующие в течение одинакового промежутка времени, вызывают одинаковые изменения импульса у различных тел, независимо от массы последних.

2. Одного и того же изменения импульса тела можно добиться, либо действуя небольшой силой в течение длительного промежутка времени, либо действуя кратковременно большой силой на то же самое тело.

Согласно второму закону Ньютона, можем записать:

∆t = ∆ = ∆ / ∆t

Отношение изменения импульса тела к промежутку времени, в течение которого это изменение произошло, равно сумме сил, действующих на тело.

Проанализировав это уравнение, мы видим, что второй закон Ньютона позволяет расширить класс решаемых задач и включить задачи, в которых масса тел изменяется с течением времени.

Если же попытаться решить задачи с переменной массой тел при помощи обычной формулировки второго закона Ньютона:

то попытка такого решения привела бы к ошибке.

Примером тому могут служить уже упоминаемые реактивный самолет или космическая ракета, которые при движении сжигают топливо, и продукты этого сжигаемого выбрасывают в окружающее пространство. Естественно, масса самолета или ракеты уменьшается по мере расхода топлива.

Несмотря на то что второй закон Ньютона в виде «равнодействующая сила равна произведению массы тела на его ускорение» позволяет решить довольно широкий класс задач, существуют случаи движения тел, которые не могут быть полностью описаны этим уравнением. В таких случаях необходимо применять другую формулировку второго закона, связывающую изменение импульса тела с импульсом равнодействующей силы. Кроме того, существует ряд задач, в которых решение уравнений движения является математически крайне затруднительным либо вообще невозможным. В таких случаях нам полезно использовать понятие импульса.

С помощью закона сохранения импульса и взаимосвязи импульса силы и импульса тела мы можем вывести второй и третий закон Ньютона.

Второй закон Ньютона выводится из соотношения импульса силы и импульса тела.

Импульс силы равен изменению импульса тела:

Произведя соответствующие переносы, мы получим зависимость силы от ускорения, ведь ускорение определяется как отношение изменения скорости ко времени, в течение которого это изменение произошло:

Подставив значения в нашу формулу, получим формулу второго закона Ньютона:

Для выведения третьего закона Ньютона нам понадобится закон сохранения импульса.

Векторы подчеркивают векторность скорости, то есть то, что скорость может изменяться по направлению. После преобразований получим:

Так как промежуток времени в замкнутой системе был величиной постоянной для обоих тел, мы можем записать:

Мы получили третий закон Ньютона: два тела взаимодействуют друг с другом с силами, равными по величине и противоположными по направлению. Векторы этих сил направлены навстречу друг к другу, соответственно, модули этих сил равны по своему значению.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.

Домашнее задание

  1. Дать определение импульсу тела, импульсу силы.
  2. Как связаны импульс тела с импульсом силы?
  3. Какие выводы можно сделать по формулам импульса тела и импульса силы?
  1. Интернет-портал Questions-physics.ru ().
  2. Интернет-портал Frutmrut.ru ().
  3. Интернет-портал Fizmat.by ().

И́мпульс (Коли́честводвиже́ния ) - векторная физическая величина, являющаяся мерой механического движения тела. В классической механике импульс тела равен произведению массы m этого тела на его скорость v , направление импульса совпадает с направлением вектора скорости:

Импульс системы частиц есть векторная сумма импульсов ее отдельных частиц: p=(сумм)p i , где p i – импульс i-й частицы.

Теорема об изменении импульса системы : полный импульс системы можно изменить только действием внешних сил: Fвнеш=dp/dt(1), т.е. производная импульса системы по времени равна векторной сумме всехвнешних сил, действующих на частицы системы. Как и в случае одной частицы, из выражения (1) следует, что приращение импульса системы равно импульсу результирующей всех внешних сил за соответствующий промежуток времени:

p2-p1= t & 0 F внешн dt.

В классической механике полным импульсом системы материальных точек называется векторная величина, равная сумме произведений масс материальных точек на их скорости:

соответственно величина называется импульсом одной материальной точки. Это векторная величина, направленная в ту же сторону, что и скорость частицы. Единицей измерения импульса в Международной системе единиц (СИ) является килограмм-метр в секунду (кг·м/с).

Если мы имеем дело с телом конечного размера, не состоящим из дискретных материальных точек, для определения его импульса необходимо разбить тело на малые части, которые можно считать материальными точками и просуммировать по ним, в результате получим:

Импульс системы, на которую не действуют никакие внешние силы (или они скомпенсированы), сохраняется во времени:

Сохранение импульса в этом случае следует из второго и третьего закона Ньютона: написав второй закон Ньютона для каждой из составляющих систему материальных точек и просуммировав по всем материальным точкам, составляющим систему, в силу третьего закона Ньютона получим равенство (*).

В релятивистской механике трёхмерным импульсом системы невзаимодействующих материальных точек называется величина

,

где m i - масса i -й материальной точки.

Для замкнутой системы не взаимодействующих материальных точек эта величина сохраняется. Однако трёхмерный импульс не есть релятивистски инвариантная величина, так как он зависит от системы отсчёта. Более осмысленной величиной будет четырёхмерный импульс, который для одной материальной точки определяется как

На практике часто применяются следующие соотношения между массой, импульсом и энергией частицы:

В принципе, для системы невзаимодействующих материальных точек их 4-импульсы суммируются. Однако для взаимодействующих частиц в релятивистской механике следует учитывать импульсы не только составляющих систему частиц, но и импульс поля взаимодействия между ними. Поэтому гораздо более осмысленной величиной в релятивистской механике является тензор энергии-импульса, который в полной мере удовлетворяет законам сохранения.


Свойства импульса

· Аддитивность. Это свойство означает, что импульс механической системы, состоящей из материальных точек, равен сумме импульсов всех материальных точек, входящих в систему.

· Инвариантность по отношению к повороту системы отсчета.

· Сохранение. Импульс не изменяется при взаимодействиях, изменяющих лишь механические характеристики системы. Это свойство инвариантно по отношению к преобразованиям Галилея Свойства сохранения кинетической энергии, сохранения импульса и второго закона Ньютона достаточно, чтобы вывести математичекую формулу импульса.

Зако́нсохране́нияи́мпульса (Зако́нсохране́ния количества движения) - векторная сумма импульсов всех тел системы есть величина постоянная, если векторная сумма внешних сил, действующих на систему, равна нулю.

В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.

Как и любой из фундаментальных законов сохранения, закон сохранения импульса связан, согласно теореме Нётер, с одной изфундаментальных симметрий, - однородностью пространства

Изменение импульса тела равно импульсу равнодействующей всех сил, действующих на тело. Это иная формулировка второго закона Ньютона