«Теория систем и системный анализ. Множества и операции над множествами Теория бесконечных множеств

Понятие множества является исходным не определяемым строго понятием. Приведем здесь определение множества (точнее, пояснение идеи множества), принадлежащее Г. Кантору: "Под многообразием или множеством я понимаю вообще все многое, которое возможно мыслить как единое, т.е. такую совокупность определенных элементов, которая посредством одного закона может быть соединена в одно целое".


Множества будем, как правило, обозначать большими буквами латинского алфавита, а их элементы - малыми, хотя иногда от этого соглашения придется отступать, так как элементами некоторого множества могут быть другие множества. Тот факт, что элемент а принадлежит множеству , записывается в виде .


В математике мы имеем дело с самыми различными множествами. Для элементов этих множеств мы используем два основных вида обозначений: константы и переменные.


Индивидная константа (или просто константа) с областью значений обозначает фиксированный элемент множества . Таковы, например, обозначения (записи в определенной системе счисления) действительных чисел: . Для двух констант и с областью значений будем писать , понимая под этим совпадение обозначаемых ими элементов множества .


Индивидное переменное (или просто переменное) с областью значений обозначает произвольный, заранее не определенный элемент множества . При этом говорят, что переменное пробегает множество или переменное принимает произвольные значения на множестве . Можно фиксировать значение переменного , записав , где - константа с той же областью значений, что и . В этом случае говорят, что вместо переменного подставлено его конкретное значение , или произведена подстановка вместо , или переменное приняло значение .


Равенство переменных понимается так: всякий раз, когда переменное принимает произвольное значение , переменное принимает то же самое значение , и наоборот. Таким образом, равные переменные "синхронно" принимают всегда одни и те же значения.


Обычно константы и переменные, область значений которых есть некоторое числовое множество, а именно одно из множеств и , называют соответственно натуральными, целыми (или целочисленными), рациональными, действительными и комплексными константами и переменными. В курсе дискретной математики мы будем использовать различные константы и переменные, область значений которых не всегда является числовым множеством.


Для сокращения записи мы будем пользоваться логической символикой, позволяющей коротко, наподобие формул, записывать высказывания. Понятие высказывания не определяется. Указывается только, что всякое высказывание может быть истинным или ложным (разумеется, не одновременно!).

Логические операции (связки) над множествами

Для образования из уже имеющихся высказываний новых высказываний используются следующие логические операции (или логические связки).


1. Дизъюнкция : высказывание (читается: " или ") истинно тогда и только тогда, когда истинно хотя бы одно из высказываний и .


2. Конъюнкция : высказывание (читается: " и ") истинно тогда и только тогда, когда истинны оба высказывания и .


3. Отрицание : высказывание (читается: "не ") истинно тогда и только тогда, когда ложно.


4. Импликация : высказывание (читается: "если , то " или " влечет ") истинно тогда и только тогда, когда истинно высказывание или оба высказывания ложны.


5. Эквивалентность (или равносильность) : высказывание (читается: ", если и только если ") истинно тогда и только тогда, когда оба высказывания и либо одновременно истинны, либо одновременно ложны. Любые два высказывания и , такие, что истинно , называют логически эквивалентными или равносильными.


Записывая высказывания с помощью логических операций, мы предполагаем, что очередность выполнения всех операций определяется расстановкой скобок. Для упрощения записи скобки зачастую опускают, принимая при этом определенный порядок выполнения операций ("соглашение о приоритетах").


Операция отрицания всегда выполняется первой, и потому ее в скобки не заключают. Второй выполняется операция конъюнкции, затем дизъюнкции и, наконец, импликации и эквивалентности. Например, высказывание записывают так: . Это высказывание есть дизъюнкция двух высказываний: первое является отрицанием , а второе - . В отличие от него высказывание есть отрицание дизъюнкции высказываний и .


Например, высказывание после расстановки скобок в соответствии с приоритетами примет вид



Сделаем некоторые комментарии по поводу введенных выше логических связок. Содержательная трактовка дизъюнкции, конъюнкции и отрицания не нуждается в специальных разъяснениях. Импликация истинна, по определению, всякий раз, когда истинно высказывание (независимо от истинности ) или и одновременно ложны. Таким образом, если импликация истинна, то при истинности имеет место истинность , но обратное может и не выполняться, т.е. при ложности высказывание может быть как истинным, так и ложным. Это и мотивирует прочтение импликации в виде "если , то ". Нетрудно также понять, что высказывание равносильно высказыванию и тем самым содержательно "если , то " отождествляется с "не или ".


Равносильность есть не что иное, как "двусторонняя импликация", т.е. равносильно . Это означает, что из истинности следует истинность и, наоборот, из истинности следует истинность .

Пример 1.1. Для определения истинности или ложности сложного высказывания в зависимости от истинности или ложности входящих в него высказываний используют таблицы истинности.


В первых двух столбцах таблицы записывают все возможные наборы значений, которые могут принимать высказывания и . Истинность высказывания обозначают буквой "И" или цифрой 1, а ложность - буквой "Л" или цифрой 0. Остальные столбцы заполняют слева направо. Так для каждого набора значений и находят соответствующие значения высказываний.


Наиболее простой вид имеют таблицы истинности логических операций (табл. 1.1-1.5).


Рассмотрим сложное высказывание . Для удобства вычислений обозначим высказывание через , высказывание через , а исходное высказывание запишем в виде . Таблица истинности этого высказывания состоит из столбцов и (табл. 1.6).

Предикаты и кванторы

Сложные высказывания образуются не только посредством логических связок, но и с помощью предикатов и кванторов.


Предикат есть высказывание, содержащее одно или несколько индивидных переменных. Например, " есть четное число" или " есть студент МГТУ им. Баумана, поступивший в 1999 г.". В первом предикате есть целочисленное переменное, во втором - переменное, пробегающее множество "человеческих индивидов". Примером предиката, содержащего несколько индивидных переменных, может служить: " есть сын ", " и учатся в одной и той же группе", " делится на ", " меньше " и т.п. Предикаты будем записывать в виде , полагая, что в скобках перечислены все переменные, входящие в данный предикат.


Подставляя вместо каждого переменного, входящего в предикат , конкретное значение, т.е. фиксируя значения , где - некоторые константы с соответствующей областью значений, получаем высказывание, не содержащее переменных. Например, "2 есть четное число", "Исаак Ньютон есть студент МГТУ им. Баумана, поступивший в 1999 г.", "Иванов есть сын Петрова", "5 делится на 7" и т.п. В зависимости от того, истинно или ложно полученное таким образом высказывание, говорят, что предикат выполняется или не выполняется на наборе значений переменных . Предикат, выполняющийся на любом наборе входящих в него переменных, называют тождественно истинным, а предикат, не выполняющийся ни на одном наборе значений входящих в него переменных, - тождественно ложным.


Высказывание из предиката можно получать не только подстановкой значений его переменных, но и посредством кванторов. Вводят два квантора - существования и всеобщности, обозначаемые и соответственно.


Высказывание ("для каждого элемента , принадлежащего множеству , истинно ", или, более коротко, "для всех истинно ") истинно, по определению, тогда и только тогда, когда предикат выполняется для каждого значения переменного .


Высказывание ("существует, или найдется, такой элемент множества , что истинно ", также "для некоторого истинно ") истинно, по определению, тогда и только тогда, когда на некоторых значениях переменного выполняется предикат .

Связывание переменных предикатов кванторами

При образовании высказывания из предиката посредством квантора говорят, что переменное предиката связывается квантором. Аналогично связываются переменные в предикатах, содержащих несколько переменных. В общем случае используют формы высказываний вида



где вместо каждой буквы с индексом может быть подставлен любой из кванторов или .


Например, высказывание читается так: "для всякого существует , такой, что истинно ". Если множества, которые пробегают переменные предикатов, фиксированы (подразумеваются "по умолчанию"), то кванторы записываются в сокращенной форме: или .


Заметим, что многие математические теоремы можно записать в форме, подобной только что приведенным высказываниям с кванторами, например: "для всех и для всех истинно: если - функция, дифференцируемая в точке , то функция непрерывна в точке ".

Способы задания множеств

Обсудив особенности употребления логической символики, вернемся к рассмотрению множеств.


Два множества и считают равными, если любой элемент множества является элементом множества и наоборот. Из приведенного определения равных множеств следует, что множество полностью определяется своими элементами.


Рассмотрим способы задания конкретных множеств. Для конечного множества, число элементов которого относительно невелико, может быть использован способ непосредственного перечисления элементов. Элементы конечного множества перечисляют в фигурных скобках в произвольном фиксированном порядке . Подчеркнем, что поскольку множество полностью определено своими элементами, то при задании конечного множества порядок, в котором перечислены его элементы, не имеет значения. Поэтому записи и т.д. все задают одно и то же множество. Кроме того, иногда в записи множеств используют повторения элементов. Будем считать, что запись задает то же самое множество, что и запись .


В общем случае для конечного множества используют форму записи . Как правило, при этом избегают повторений элементов. Тогда конечное множество, заданное записью , состоит из элементов. Его называют также n-элементным множеством.


Однако способ задания множества путем непосредственного перечисления его элементов применим в весьма узком диапазоне конечных множеств. Наиболее общим способом задания конкретных множеств является указание некоторого свойства, которым должны обладать все элементы описываемого множества, и только они.


Эта идея реализуется следующим образом. Пусть переменное пробегает некоторое множество , называемое универсальным множеством. Мы предполагаем, что рассматриваются только такие множества, элементы которых являются и элементами множества . В таком случае свойство, которым обладают исключительно элементы данного множества , может быть выражено посредством предиката , выполняющегося тогда и только тогда, когда переменное принимает произвольное значение из множества . Иначе говоря, истинно тогда и только тогда, когда вместо подставляется индивидная константа .


Предикат называют в этом случае характеристическим предикатом множества , а свойство, выражаемое с помощью этого предиката, - характеристическим свойством или коллективизирующим свойством.


Множество, заданное через характеристический предикат, записывается в следующей форме:



Например, означает, что " есть множество, состоящее из всех таких элементов , что каждое из них есть четное натуральное число".


Термин "коллективизирующее свойство" мотивирован тем, что это свойство позволяет собрать разрозненные элементы в единое целое. Так, свойство, определяющее множество (см. ниже), в буквальном смысле слова формирует некий "коллектив":



Если мы вернемся к канторовскому определению множества, то характеристический предикат множества и есть тот закон, посредством которого совокупность элементов соединяется в единое целое. Предикат, задающий коллективизирующее свойство, может быть тождественно ложным. Множество, определенное таким образом, не будет иметь ни одного элемента. Его называют пустым множеством и обозначают .


В противоположность этому тождественно истинный характеристический предикат задает универсальное множество.


Обратим внимание на то, что не каждый предикат выражает какое-то коллективизирующее свойство.


Замечание 1.1. Конкретное содержание понятия универсального множества определяется тем конкретным контекстом, в котором мы применяем теоретико-множественные идеи. Например, если мы занимаемся только различными числовыми множествами, то в качестве универсального может фигурировать множество всех действительных чисел. В каждом разделе математики рассматривается относительно ограниченный набор множеств. Поэтому удобно полагать, что элементы каждого из этих множеств суть также и элементы некоторого "объемлющего" их универсального множества. Зафиксировав универсальное множество, мы тем самым фиксируем область значений всех фигурирующих в наших математических рассуждениях переменных и констант. В этом случае как раз и можно не указывать в кванторах то множество, которое пробегает связываемое квантором переменное. В дальнейшем изложении мы встретимся с разными примерами конкретных универсальных множеств.

История

Наивная теория множеств

Первый набросок теории множеств принадлежит Бернарду Больцано («Парадоксы бесконечного», 1850). В этой работе рассматриваются произвольные (числовые) множества, и для их сравнения определено понятие взаимно-однозначного соответствия .

В 1870 году немецкий математик Георг Кантор разработал свою программу стандартизации математики, в рамках которой любой математический объект должен был оказываться тем или иным «множеством». Этот подход изложен в двух его статьях, опубликованных в 1879-1897 годах в известном немецком журнале «Математические анналы» (нем. «Mathematische Annalen» ). Например, натуральное число, по Кантору, следовало рассматривать как множество, состоящее из единственного элемента другого множества, называемого «натуральным рядом» - который, в свою очередь, сам представляет собой множество, удовлетворяющее так называемым аксиомам Пеано . При этом общему понятию «множества», рассматривавшемуся им в качестве центрального для математики, Кантор давал мало что определяющие определения вроде «множество есть многое, мыслимое как единое», и т. д. Это вполне соответствовало умонастроению самого Кантора, подчёркнуто называвшего свою программу не «теорией множеств» (этот термин появился много позднее), а учением о множествах (Mengenlehre ).

Программа Кантора вызвала резкие протесты со стороны многих современных ему крупных математиков. Особенно выделялся своим непримиримым к ней отношением Леопольд Кронекер , полагавший, что математическими объектами могут считаться лишь натуральные числа и то, что к ним непосредственно сводится (известна его фраза о том, что «бог создал натуральные числа, а всё прочее - дело рук человеческих»). Полностью отвергли теорию множеств и такие авторитетные математики, как Герман Шварц и Анри Пуанкаре . Тем не менее, другие крупные математики - в частности, Готлоб Фреге , Рихард Дедекинд и Давид Гильберт - поддержали Кантора в его намерении перевести всю математику на теоретико-множественный язык. В частности, теория множеств стала фундаментом теории меры и интеграла , топологии и функционального анализа .

Однако вскоре выяснилось, что установка Кантора на неограниченный произвол при оперировании с бесконечными множествами (выраженный им самим в принципе «сущность математики состоит в её свободе») является изначально порочной (см. Кризис математических основ). А именно, был обнаружен ряд теоретико-множественных антиномий : оказалось, что при использовании теоретико-множественных представлений некоторые утверждения могут быть доказаны вместе со своими отрицаниями (а тогда, согласно правилам классической логики высказываний , может быть «доказано» абсолютно любое утверждение).

Аксиоматическая теория множеств

Особенностью аксиоматического подхода является отказ от лежащего в основе программы Кантора представления о действительном существовании множеств в некотором идеальном мире. В рамках аксиоматических теорий множества «существуют» исключительно формальным образом, и их «свойства» могут существенно зависеть от выбора аксиоматики. Этот факт всегда являлся мишенью для критики со стороны тех математиков, которые не соглашались (как на том настаивал Гильберт) признать математику лишённой всякого содержания игрой в символы. В частности, Н. Н. Лузин писал, что «мощность континуума, если только мыслить его как множество точек, есть единая некая реальность», место которой в ряду кардинальных чисел не может зависеть от того, признаётся ли в качестве аксиомы континуум-гипотеза , или же её отрицание.

В настоящее время наиболее распространённой аксиоматической теорией множеств является ZFC - теория Цермело - Френкеля с аксиомой выбора . Вопрос о непротиворечивости этой теории (а тем более - о существовании модели для неё) остаётся нерешённым.

Не всеми математиками аксиома выбора принимается безоговорочно. Так, например Эмиль Борель и Анри Лебег считают, что доказательства, полученные при помощи этой аксиомы, имеют другую познавательную ценность, чем доказательства, независимые от неё. Другие же математики, такие как Феликс Хаусдорф и Адольф Френкель, принимают аксиому выбора безоговорочно, признавая за ней ту же степень очевидности, что и за другими аксиомами Цермело - Френкеля.

Основные понятия

В основе теории множеств лежат первичные понятия: множество и отношение быть элементом множества (обозначается как - «x есть элемент множества A», «x принадлежит множеству A»). Среди производных понятий наиболее важны следующие:

  • пустое множество , обычно обозначается символом ;
  • семейство множеств;
  • операции:

    Для множеств определены следующие бинарные отношения :

    • править] Расширения

      Основная статья: Теория комплектов

      Теория комплектов - естественное расширение (обобщение) теории множеств. Подобно множеству, комплект - набор элементов из некоторой области. Отличие от множества: комплекты допускают присутствие нескольких экземпляров одного и того же элемента (элемент входит от нуль раз, то есть, не входит в комплект, до любого заданного числа раз) . (см. например, Мультисочетания).

      Приложения

      См. также

      Примечания

      Литература

      • К. Куратовский , А. Мостовский Теория множеств / Перевод с английского М. И. Кратко под редакцией А. Д. Тайманова. - М .: Мир, 1970. - 416 с.
      • Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 1. Начала теории множеств.
      • А. Френкель, И. Бар-Хиллел Основания теории множеств / Перевод с английского Ю. А. Гастева под редакцией А. С. Есенина-Вольпина . - М .: Мир, 1966. - 556 с.

Wikimedia Foundation . 2010 .

  • Математический анализ
  • Подмножество

Смотреть что такое "Теория множеств" в других словарях:

    ТЕОРИЯ МНОЖЕСТВ - ТЕОРИЯ МНОЖЕСТВ, раздел математики, начало которому было положено работами Джорджа БУЛЯ в области математической логики, но в настоящее время больше связанный с изучением МНОЖЕСТВ абстрактных или реальных объектов, а не с логическими… … Научно-технический энциклопедический словарь

    теория множеств - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN set theory … Справочник технического переводчика

    ТЕОРИЯ МНОЖЕСТВ - теория, в к рой изучаются множества (классы) элементов произвольной природы. Созданная прежде всего трудами Кантора (а также Р. Дедекинда и К. Вейерштрасса), Т. м. к концу 19 в. стала основой построения сложившихся к тому времени математич.… … Философская энциклопедия

    ТЕОРИЯ МНОЖЕСТВ - раздел математики, исследующий общие свойства множеств. Множеством называется любое объединение в одно целое некоторых определенных и различных между собой объектов нашего восприятия или мысли. В Т. м. изучаются общие свойства различных операций… … Энциклопедический словарь по психологии и педагогике

    Теория множеств Кантора - … Википедия

    Теория множеств Цермело-Френкеля - … Википедия

На математическом кружке вместе с учащимися рассматривался ряд задач, благодаря наглядности которых, процесс решения становится понятным и интересным. На первый взгляд им хочется составить систему уравнений, но в процессе решения остается много неизвестных, что ставит их в тупик. Для того, чтобы уметь решать эти задачи, необходимо предварительно рассмотреть некоторые теоретические разделы теории множеств.

Введем определение множества, а так же некоторые обозначения.

Под множеством мы будем понимать такой набор, группу, коллекцию элементов, обладающих каким-либо общим для них всех свойством или признаком.

Множества обозначим А, В, С…, а элементы множеств а, b, с…, используя латинский алфавит.

Можно сделать такую запись определения множества:

“” – принадлежит;
“=>“ – следовательно;
“ø” – пустое множество, т.е. не содержащее ни одного элемента.

Два множества будем называть равными, если они состоят из одних и тех же элементов

Например:

Если любой элемент из множества А принадлежит и множеству В, то говорят, что множество А включено в множество В, или множество А является подмножеством множества В, или А является частью В, т.е. если , то , где “С” знак подмножества или включения.

Графически это выглядит так (рис.1):

Можно дать другое определение равных множеств. Два множества называются равными, если они являются взаимными подмножествами.

Рассмотрим операции над множествами и их графическую иллюстрацию (рис.2).

Объединением множеств А и В называется множество С, образованное всеми элементами, которые принадлежат хотя бы одному из множеств А или В. Слова “или ” ключевое в понимании элементов входящих в объединение множеств.

Это определение можно записать с помощью обозначений:

А υ В, где

где “ υ ” – знак объединения,

“ / ” – заменяет слова ”таких что“

Пресечение двух множеств А и В называется множество С, образованное всеми элементами, которые принадлежат и множеству А, и множеству В. Здесь уже ключевое слово “и”. Запишем коротко:

А ∩ В = С, где

“∩“ – знак пересечения. (рис.3)

Обозначим буквой Е основное или универсальное множество, где A С Е (“”- любо число), т.е. А Е = Е; АЕ =А

Множество всех элементов универсального множества Е, не принадлежащих множеству А называется дополнением множества А до Е и обозначается ĀЕ или Ā (рис.4)

Е

Примерами для понимания этих понятий являются свойства:

А Ā=Е Ø = Е Е Ā=Ā

А ∩ Ā= Ø Ē = Ø (Ā)=А

Свойства дополнения имеют свойства двойственности:

Введем еще одно понятие – это мощность множества.

Для конечного множества А через m (A) обозначим число элементов в множестве А.

Из определение следуют свойства:

m (A) + m (Ā) = m (E)

А = В => m(A) = m(B)

Для любых конечных множеств справедливы так же утверждения:

m (AB) =m (A) + m (В) – m (А∩В)

m (A∩B) = m (A) + m (В) – m (АВ)

m (ABC) = m (A) + m (В) + m (С)– m (А∩В) - m (А∩С) – m (В∩С) – m (А∩В∩С).

А теперь рассмотрим ряд задач, которые удобно решать, используя графическую иллюстрацию.

Задача №1

В олимпиаде по математике для абитуриентов приняло участие 40 учащихся, им было предложено решить одну задачу по алгебре, одну по геометрии и одну по тригонометрии. По алгебре решили задачу 20 человек, по геометрии – 18 человек, по тригонометрии – 18 человек.

По алгебре и геометрии решили 7 человек, по алгебре и тригонометрии – 9 человек. Ни одной задачи не решили 3 человека.

  1. Сколько учащихся решили все задачи?
  2. Сколько учащихся решили только две задачи?
  3. Сколько учащихся решили только одну задачу?

Задача № 2

Первую или вторую контрольные работы по математике успешно написали 33 студента, первую или третью – 31 студент, вторую или третью – 32 студента. Не менее двух контрольных работ выполнили 20 студентов.

Сколько студентов успешно решили только одну контрольную работу?

Задача № 3

В классе 35 учеников. Каждый из них пользуется хотя бы одним из видов городского транспорта: метро, автобусом и троллейбусом. Всеми тремя видами транспорта пользуются 6 учеников, метро и автобусом – 15 учеников, метро и троллейбусом – 13 учеников, троллейбусом и автобусом – 9 учеников.

Сколько учеников пользуются только одним видом транспорта?

Решение задачи № 1

Запишем коротко условие и покажем решение:

  • m (Е) = 40
  • m (А) = 20
  • m (В) = 18
  • m (С) = 18
  • m (А∩В) = 7
  • m (А∩С) = 8
  • m (В∩С) = 9

m (АВС) = 3 => m (АВС) = 40 – 3 = 37

Обозначим разбиение универсального множества Е множествами А, В, С (рис.5).

К1 – множество учеников, решивших только одну задачу по алгебре;

К2 – множество учеников, решивших только две задачи по алгебре и геометрии;

К3 – множество учеников, решивших только задачу по геометрии;

К4 – множество учеников, решивших только две задачи по алгебре и тригонометрии;

К5 – множество всех учеников, решивших все три задачи;

К6 – множество всех учеников, решивших только две задачи, по геометрии и тригонометрии;

К7 – множество всех учеников, решивших только задачу по тригонометрии;

К8 – множество всех учеников, не решивших ни одной задачи.

Используя свойство мощности множеств и рисунок можно выполнить вычисления:

Ответ:

5 учеников решили три задачи;

9 учеников решили только по две задачи;

23 ученика решили только по одной задаче.

С помощью этого метода можно записать решения второй и третьей задачи так:

Решение задачи № 2

Найти m (К1 ) + m (К3 ) + m (К7 )

Ответ:

Только одну контрольную работу решили 18 учеников.

Решение задачи № 3

  • m (Е) = 35
  • m (А∩В∩С)= m (К5 ) = 6
  • m (А∩В)= 15
  • m (А∩С)= 13
  • m (В∩С)= 9

Найти m (К1) + m (К3) + m (К7 )

  • m (К2 ) = m (А∩В) - m (К5 ) = 15-6=9
  • m (К4 ) = m (А∩С) - m (К5 ) = 13-6=7
  • m (К6 ) = m (В∩С) - m (К5 ) = 9-6=3
  • m (К1 ) + m (К3 ) + m (К7 ) = m (Е) - m (К4 ) - m (К2 ) - m (К6 ) - m (К5 ) = 35-7-9-3-6=10

Ответ:

Только одним видом транспорта пользуется 10 учеников.

Литература: А.Х. Шахмейстер «Множества. Функции. Последовательности»

В математике понятие множества является одним из основных, фундаментальным, однако единого определения множества не существует. Одним из наиболее устоявшихся определений множества является следующее: под множеством понимают любое собрание определённых и отличных друг от друга объектов, мыслимых как единое целое. Создатель теории множеств немецкий математик Георг Кантор (1845-1918) говорил так: "Множество есть многое, мыслимое нами как целое".

Множества как тип данных оказались очень удобными для программирования сложных жизненных ситуаций, так как с их помощью можно точно моделировать объекты реального мира и компактно отображать сложные логические взаимоотношения. Множества применяются в языке программирования Паскаль и один из примеров решения мы ниже разберём. Кроме того, на основе теории множества создана концепция реляционных баз данных, а на основе операций над множествами - реляционная алгебра и её операции - используемые в языках запросов к базам данных, в частности, SQL.

Пример 0 (Паскаль). Существует набор продуктов, продаваемых в нескольких магазинах города. Определить: какие продукты есть во всех магазинах города; полный набор продуктов в городе.

Решение. Определяем базовый тип данных Food (продукты), он может принимать значения, соответствующие названиями продуктов (например, hleb). Объявляем тип множества, он определяет все подмножества, составленные из комбинаций значений базового типа, то есть Food (продукты). И формируем подмножества: магазины "Солнышко", "Ветерок", "Огонёк", а также производные подмножества: MinFood (продукты, которые есть во всех магазинах), MaxFood (полный набор продуктов в городе). Далее прописываем операции для получения производных подмножеств. Подмножество MinFood получается в результате пересечения подмножеств Solnyshko, Veterok и Ogonyok и включает те и только те элементы этих подмножеств, которые включены в каждое их этих подмножеств (в Паскале операция пересечения множеств обозначается звёздочкой: A * B * C, математическое обозначение пересечения множеств дано далее). Подмножество MaxFood получается в результате объединения тех же подмножеств и включает элементы, которые включены во все подмножества (в Паскале операция объединения множеств обозначается знаком "плюс": A + B + C, математическое обозначение объединения множеств дано далее).

Код PASCAL

Program Shops; type Food=(hleb, moloko, myaso, syr, sol, sahar, maslo, ryba); Shop = set of Food; var Solnyshko, Veterok, Ogonyok, MinFood, MaxFood: Shop; Begin Solnyshko:=; Veterok:=; Ogonyok:=; ... MinFood:=Solnyshko * Veterok * Ogonyok; MaxFood:=Solnyshko + Veterok + Ogonyok; End.

Какие бывают множества

Объекты, составляющие множества - объекты нашей интуиции или интеллекта - могут быть самой различной природы. В примере в первом параграфе мы разобрали множества, включающие набор продуктов. Множества могут состоять, например, и из всех букв русского алфавита. В математике изучаются множества чисел, например, состоящие из всех:

Натуральных чисел 0, 1, 2, 3, 4, ...

Простых чисел

Чётных целых чисел

и т.п. (основные числовые множества рассмотрены в этого материала).

Объекты, составляющие множество, называются его элементами. Можно сказать, что множество - это "мешок с элементами". Очень важно: в множестве не бывает одинаковых элементов.

Множества бывают конечными и бесконечными. Конечное множество - это множество, для которого существует натуральное число, являющееся числом его элементов. Например, множество первых пяти неотрицательных целых нечётных чисел является конечным множеством. Множество, не являющееся конечным, называется бесконечным. Например, множество всех натуральных чисел является бесконечным множеством.

Если M - множество, а a - его элемент, то пишут: a M , что означает "a принадлежит множеству M ".

Из первого (нулевого) примера на Паскале с продуктами, которые есть в тех или иных магазинах:

hleb VETEROK ,

что означает: элемент "hleb" принадлежит множеству продуктов, которые есть в магазине "VETEROK".

Существуют два основных способа задания множеств: перечисление и описание.

Множество можно задать, перечислив все его элементы, например:

VETEROK = {hleb , syr , maslo } ,

A = {7 , 14 , 28 } .

Перечислением можно задать только конечное множество. Хотя можно сделать это и описанием. Но бесконечные множества можно задать только описанием.

Для описания множеств используется следующий способ. Пусть p (x ) - некоторое высказывание, которое описывает свойства переменной x , областью значений которых является множество M . Тогда через M = {x | p (x )} обозначаентся множество, состоящее из всех тех и только тех элементов, для которых высказывание p (x ) истинно. Это выражение читается так: "Множество M , состоящее из всех таких x , что p (x ) ".

Например, запись

M = {x | x ² - 3x + 2 = 0}

Пример 6. Согласно опросу 100 покупателей рынка, купивших цитрусовые, апельсины купили 29 покупателей, лимоны - 30 покупателей, мандарины - 9, только мандарины - 1, апельсины и лимоны - 10, лимоны и мандарины - 4, все три вида фруктов - 3 покупателя. Сколько покупателей не купили ни одного вида перечисленных здесь цитрусовых? Сколько покупателей купили только лимоны?

Операция декартова произведения множеств

Для определения ещё одной важной операции над множествами - декартова произведения множеств введём понятие упорядоченного набора длины n .

Длиной набора называется число n его компонент. Набор, составленный из элементов , взятых именно в этом порядке, обозначается . При этом i я () компонента набора есть .

Сейчас последует строгое определение, которое, возможно, не сразу понятно, но после этого определения будет картинка, по которой станет понятно, как получить декартово произведение множеств.

Декартовым (прямым) произведением множеств называется множество, обозначаемое и состоящее из всех тех и только тех наборов длины n , i -я компонента которых принадлежит .

Например, если , , ,

    Михаил Раскин

    Современная математика в качестве своего основания использует теорию множеств. Традиционно при анализе теоретико-множественных тонкостей используется аксиоматика Цермело-Френкеля с аксиомой выбора, обозначаемая ZFC. На аксиому выбора опираются доказательства наличия базиса в любом векторном пространстве и существования неизмеримого множества в математическом анализе. К сожалению, теория множеств обязана работать и со множествами, которые не описываются достаточно подробно и конкретно, чтобы мы могли себе их представить. В курсе будет рассмотрен один пример, к чему это приводит. Оказывается, ценой ослабления аксиомы выбора можно получить теорию множеств, в которой любая ограниченная функция на отрезке интегрируема по Лебегу. То, что используется аксиома выбора, в каком-то смысле, произошло исторически. Курс основан на статье Р.М. Соловэя о построении теории множеств, в которой все множества вещественных чисел измеримы.

    Михаил Раскин

    В теории множеств есть несколько известных вопросов о том, следует ли из некоторых аксиом другая аксиома (или гипотеза; аксиома - это просто гипотеза, которой пользуется подавляющее большинство). Как и в других областях математики, недоказуемость можно продемонстрировать с помощью модели, в которой верны предположения, но не верна гипотеза. Для построения одного из самых известных таких примеров, модели теории множеств, в которой есть промежуточная мощность между мощностями натурального ряда и вещественной прямой, Коэн разработал метод вынуждения.

    Иван Ященко

    При развитии теории множеств, на которой базируется вся современная математика, возникали парадоксы. Например, парадокс брадобрея, формулируемый следующим образом: «Бреет ли себя брадобрей, если он бреет тех и только тех, кто сам себя не бреет?» В брошюре рассказывается о том, как теория множеств обходится с подобными ситуациями, а также о других парадоксах, в том числе возникающих при рассмотрении аксиомы выбора. В частности, вы узнаете, как из одного апельсина сделать два. Приведены задачи, самостоятельное решение которых поможет читателю более полно разобраться в материале. Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей.

    Парадоксы являются следствием дихотомии языка и мышления, выражением глубоких диалектических (теорема Гёделя позволила проявить диалектику в процессе познания) и гносеологических трудностей, связанных с понятиями предмета и предметной области в формальной логике, множества (класса) в логике и теории множеств, с употреблением принципа абстракции, позволяющего вводить в рассмотрение новые (абстрактные) объекты (бесконечность), со способами определения абстрактных объектов в науке и т. п. Поэтому не может быть дано универсального способа устранения всех парадоксов.

    Уверены ли вы, что точно представляете себе бесконечность? Харизматичный математик Джеймс запросто убедит вас в обратном.

    Александр Буфетов

    В стандартной интерпретации гёделева неразрешимая формула A означает «не существует вывода формулы A», то есть утверждает свою собственную невыводимость в системе S. Таким образом, A является аналогом парадокса лжеца. Рассуждения Гёделя в целом очень похожи на парадокс Ришара. Более того, для доказательства существования невыводимых утверждений может быть использован любой семантический парадокс.

    Юрий Лебедев

    Когда у меня в руках оказалась старая картонная папка, я был уже уверен, что в ней не вырезки из газет о «царице полей» кукурузе. И совершенно не удивился тому, что моя уверенность оправдалась. В папке находились рукописи или, точнее, черновики двух статей - «Принципы семиотической термодинамики», «Отказ от исключения» - и целая пачка других, для прочтения которых потребуется еще много усилий. Ни имени автора, ни даты написания на листках не было. Вероятнее всего, папку забыл кто-то из «дикарей» прошлых лет. Не имея возможности объясниться с автором, я решил предложить вашему вниманию свой вариант расшифровки одной из этих до крайности небрежно написанных неудобочитаемым почерком статей.

    Владимир Успенский

    Если в качестве значений переменных разрешается брать только элементы носителя, язык называют элементарным языком, или языком первого порядка. Если же в качестве значений переменных разрешается брать также функции и отношения, язык называют языком второго порядка. Выразительные возможности языков первого порядка довольно ограничены. Например, на языке первого порядка можно сообщить, что носитель содержит ровно 17 элементов, но невозможно выразить его конечность. На языке второго порядка выразить конечность носителя возможно. Возникает совершенно естественное недоумение: а зачем тогда пользоваться языками первого порядка с их бедными выразительными средствами, не лучше ли пользоваться языками второго порядка?

    Михаил Раскин

    Все мы знаем, что математика доказывает импликации. Другими словами, мы доказываем не то, что какое-то утверждение верно, а то, что оно следует из принятых нами аксиом. Но при этом часто недооценивается, насколько сильно можно поменять набор аксиом. Одно из базовых понятий математики, на которых видна степень условности выбора конкретного набора аксиом – понятие множества. Сначала оно казалось совершенно очевидным. К сожалению, этот подход привёл к противоречиям. После этого стали развиваться разные способы работать со множествами не приходя к парадоксам. Понятие множества используется во многих разделах математики, из-за чего работать со множествами обычно учат постепенно, по кусочкам добавляя факты как естественные и самоочевидные основы, пока не получится теория, носящая имя ZFC. Из-за этого часто оказывается заметён под ковёр тот факт, что ZFC лишь один из возможных вариантов и что замена оснований теории множеств совсем не обязана рушить другие разделы математики. Курс будет посвящён рассказу о том, что может быть проблемой при пользовании какой-то аксиоматикой и сколь разнообразны варианты. Предварительные требования будут изменены в соответствии со знаниями и интересами аудитории; я надеюсь, что обозначения →, ∀, ∨, ∈, ∈, ∪, … всё же всем знакомы и привычны настолько, что ошибочно кажутся понятными.

    Джордана Цепелевич

    Всякая надежда на создание единой математической теории, амбициозного проекта, который был предложен математиком Давидом Гильбертом в 19 веке и продолжил существовать, поддерживаемый многими, в 20 столетии, рухнула. Основы математики были далеко не столь надежными, как того хотел бы Гильберт. А Гëдель своими теоремами ясно продемонстрировал, что любая система аксиом, какой бы обширной она ни была, уязвима для возникновения невосполнимых пробелов. Попытки же восполнить их созданием более полной системы породили бы только бóльшее количество утверждений без доказательств - так что и тут возникнет необходимость в усовершенствовании системы, и так далее до бесконечности. И случилось нечто странное: математики решили не обращать на это внимания. Они посчитали, что неполнота систем не имеет непосредственного влияния на их работу.