Откуда мы знаем, что все состоит из атомов? Основные положения МКТ. Доказательство существования молекул. Размеры и масса молекул Похожие работы на - Теория броуновского движения и экспериментальное доказательство реального существования атомов и молекул

Рис. 8. Броуновское движение

Атомно-молекулярное уче­ние имело огромное значение для химии, которая благодаря ему стала быстро развиваться и в короткое время достигла блестя­щих успехов.

Однако в конце XIX в., когда это учение дало уже столько ценных результатов возникло реакционное течение, в корне от­рицавшее само существование атомов и молекул. Под влиянием идеалистической философии в Германии появилась так называе­мая «энергетическая» школа химиков, возглавлявшаяся извест­ным ученым Оствальдом, в основу теоретических воззрений кото­рой было положено отвлеченное понятие энергии, не связанной с материей. Сторонники этой школы считали, что все внешние явления могут быть объяснены как процессы между энергиями, и категорически отвергали существование атомов и молекул, как недоступных непосредственному чувственному восприятию частиц.

Энергетическое учение Оствальда являлось одной из разно­видностей идеалистических философских течений, направленных против материализма в науке. Отрывая энергию, т. е. движение от материи, допуская существование нематериального движения, последователи Оствальда тем самым молчаливо признавал, что наше сознание, мысль, ощущения существуют самостоятельно, как нечто первичное, не связанное с материей. Химические эле­менты рассматривались ими не как определенные , а как различные формы химической энергии.

Реакционная сущность учения Оствальда была блестяще вскрыта В. И. Лениным в его труде «Материализм и эмпириокри­тицизм». В гл. V этого труда, говоря о связи философского идеа­лизма с некоторыми новыми течениями в физике, Ленин остана­вливается и на «философии» Оствальда, доказывает всю ее несостоятельность и неизбежность ее поражения в борьбе с мате­риализмом.

«…попытка мыслить движение без материи, - пишет Ленин, - протаскивает мысль, оторванную от материи, а это и есть фило­софский идеализм» .

Ленин не только полностью вскрыл идеалистическую основу оствальдовских рассуждений, но и показал содержащиеся в них внутренние противоречия. Выдвигая философскую идею о суще­ствовании движения без материи, Оствальд отвергает объектив­ное существование материи, но в же время как физико-химик сам на каждом шагу трактует энергию материалистически, опи­раясь на закон сохранения и превращения энергии. «Превраще­ние энергии, - констатирует Ленин, - рассматривается естество­знанием как объективный процесс, независимый от сознания че­ловека и от опыта человечества, т. е. рассматривается материа­листически. И у самого Оствальда в массе случаев, даже ве­роятно в громадном большинстве случаев, под энергией разу­меется материальное движение» .

Вскоре новые поразительные открытия, которыми ознаменова­лось начало XX в., настолько неопровержимо доказали реаль­ность атомов и молекул, что в конце концов даже Оствальд вы­нужден был признать их существование.

Из экспериментальных исследований, посвященных вопросу о существовании атомов и молекул, особенный интерес пред­ставляют работы французского физика Перрена по изучению распределения и движения частиц в так называемых суспен­зиях.

Приготовив суспензию, содержавшую частицы одинакового размера, видимые в микроскоп, Перрен исследовал распределе ние частиц в ней. В результате многочисленных опытов, прове­денных с необычайной тщательностью, им было доказано, что распределение частиц суспензии по высоте в точности соответ­ствует закону уменьшения концентрации газов с высотой, выве­денному из кинетической теории газов. Таким образом, Перрен показал, что суспензии - это настоящие модели газов; следова­тельно, отдельные молекулы существуют и в газах, только они невидимы вследствие их малой величины.

Еще более убедительными оказались результаты, полученные Перреном при наблюдении движения частиц суспензии.

При рассмотрении капли жидкости с взвешенными в ней ча­стицами в сильный микроскоп можно видеть, что частицы не остаются в покое, но непре­ рывно движутся во всевозмож­ных направлениях. Движение частиц отличается крайней бес­порядочностью. Если просле­дить под микроскопом путь от­дельной частицы, получается очень сложная зигзагообраз­ная линия, указывающая на от­сутствие всякой закономерно-ти в движении частиц (рис. 8). Это движение может продол­жаться сколько угодно време­ни, не ослабевая и не изменяя своего характера.

Описываемое явление было открыто в 1827 г. английским ботаником Броуном и получило название броуновского движения. Однако объяснение ему было дано только в 60-х годах на основе молекулярно-кинетических представлений. Соглас­но этому объяснению, причиной видимого движения частиц суспензии является невидимое тепловое движение окружающих их молекул жидкости. Толчки, получаемые частицами суспензии со всех сторон от молекул жидкости, не могут, конечно, в точ­ности уравновешивать друг друга; в каждый момент равновесие нарушается в пользу того или иного направления, в результате чего частицы и совершают свой причудливый путь.

Таким обра­зом, уже самый факт существования броуновского движения свидетельствует о реальности молекул и дает картину их беспо­рядочного движения, так как взвешенные частицы в общем повто­ряют те же движения, что и молекулы жидкости. Но Перрен в своих исследованиях пошел еще дальше: путем длительных наблюдений за движением частиц под микроскопом ему удалось определить среднюю скорость перемещения частиц. Отсюда, зная массу частиц приготовленной суспензии, Перрен вычислил их среднюю кинетическую энергию. Результат получился порази­тельный. Оказалось, что кинетическая энергия частиц как раз соответствует кинетической энергии молекул газа, вычисленной для той же температуры на основании, кинетической теории. Частицы Перрена были примерно в 10 12 раз тяжелее молекул во­дорода, кинетическая же энергия тех и других одинакова. После установления этих фактов уже невозможно было отрицать объективную реальность молекул.

В настоящее время броуновское движение рассматривается и как следствие теплового движения молекул жидкости и как са­мостоятельное тепловое движение частиц суспензии. Последние представляют собой как бы молекулы-гиганты, участвующие в тепловом движении наравне с невидимыми молекулами жид­кости. Никакого принципиального различия между теми и дру­гими не существует.

Опыты Перрена не только доказали, что молекулы действи­тельно существуют, но и дали возможность рассчитать число мо­лекул в одной граммолекуле газа. Это число, имеющее, как мы знаем, универсальное значение, получило название числа Авогадро. По вычислениям Перрена, оно оказалось равным приблизительно 6,5 10 23 , что очень близко подходило к значе­ниям этой величины, найденным ранее другими способами. Впо­следствии число Авогадро много раз определялось совершенно различными физическими методами, причем результаты всегда получались очень близкими. Такое совпадение результатов сви­детельствует о правильности найденного числа и служит не­оспоримым доказательством реального существования молекул.

В настоящее время число Авогадро принимается равным

6,02 10 23

Колоссальная величина числа Авогадро выходит за пределы нашего воображения. Некоторое представление о ней можно со­ставить только путем сравнений.

Положим, например, что 1 моль, т. е. 18 г, воды равномерно распределен по всей поверхности земного шара. Простой подсчет показывает, что на каждый квадратный сантиметр поверхности придется около 100 000 молекул.

Приведем еще другое сравнение. Допустим, что нам удалось каким-то способом пометить все молекулы, содержащиеся в 18 г воды. Если затем вылить эту воду в море и дождаться, чтобы она равномерно перемешалась со всеми водами земного шара, зачерпнув в любом месте стакан воды, мы найдем в нем около 100 отмеченных нами молекул.

Рис. 9. Частицы дыма окиси цинка при увеличении в 20 000 раз

Так как граммолекула любого газа занимает при нормальных условиях объем 22,4 л, то в 1 мл газа содержится при этих усло­виях 2,7 10 19 молекул. Если довести разрежение газа в каком-нибудь сосуде даже до крайнего предела, которого позволяют достигнуть наилучшие насосы (приблизительно до одной десяти­миллиардной доли атмосферы), т. е. получить то, что мы практически считаем «безвоздушным пространством», то все-таки в 1 см 3 этого пространства молекул остаётся значительно больше, чем всех людей на земном шаре. По этому можно су­дить, как ничтожны должны быть размеры молекул и атомов, если столь огромное число их умещается в 1 см 3 . И тем не менее физики различными способами вычислили эти размеры. Оказы­вается, что если представить себе молекулы в виде крошечных ша­риков, то диаметр их будет измеряться стомиллионными до­лями сантиметра. Например, диаметр молекулы кислорода равняется приблизительно 3,2 10 -8 см, диаметр молекулы водо­рода 2,6 10 -8 см и диаметр атома водорода 1 10 -8 см.

Для выражения таких малых величин очень удобно принять за единицу длины одну стомиллионную долю сантиметра (10 -8 см). Эта единица была предложена шведским физиком Ангстремом для измерения длин световых волн и по его имени названаангстремом. Обозначается она символом А или А. Линейные размеры атомов и молекул выражаются обычно не­сколькими ангстремами.

Зная число молекул в одной граммолекуле, а следовательно, й число атомов в одном грамматоме, можно рассчитать вес атома любого элемента в граммах. Например, разделив грамматом водорода на число Авогадро, получим вес атома водорода в граммах:

Альберт Эйнштейн

Нередко заслугой Альберта Эйнштейна считают лишь создание теории относительности. С точки зрения истории науки такая оценка неверна и несправедлива по отношению к его замечательным достижениям в других областях физики. "Отец теории относительности" был ученым с исключительно многосторонними интересами.

В бернские годы, во времена самой бурной творческой активности Эйнштейна, почти одновременно появились на свет первые результаты его исследований, имевшие огромное значение для дальнейшего развития физики. Особенно плодотворным оказался 1905 год, когда Эйнштейну было 26 лет. Хронологически первыми были его исследования по молекулярной физике.

Работы Эйнштейна по тепловому движению посвящены главным образом проблеме статистического описания движения атомов и молекул и взаимосвязи между движением и теплотой. В этих работах Эйнштейн пришел к выводам, существенно расширяющим результаты, полученные гениальным австрийским физиком Людвигом Больцманом и американцем Уиллардом Гиббсом. Основная заслуга Эйнштейна заключалась не столько в преодолении математических трудностей, сколько в более глубокой постановке физических вопросов. Он руководствовался при этом идеей Больцмана о том, что в основе математической трактовки учения о теплоте должно лежать понятие вероятности ("принцип Больцмана").

Все эти вопросы были разработаны Эйнштейном самостоятельно, поэтому мы имеем право вместе с Максом Борном говорить о том, что "Эйнштейн открыл заново все существенные черты статистической механики". Молодой исследователь принялся за свои работы по молекулярной физике с твердым намерением подтвердить надежными результатами атомистическую теорию, в правильности которой он был убежден, хотя тогда она многим казалась спорной.

В центре внимания Эйнштейна в его исследовательской работе по теории теплоты находилось броуновское молекулярное движение. В 1827 году английский ботаник Роберт Броун проводил наблюдения цветочной пыльцы под микроскопом; при этом он обнаружил, что взвешенные в капле жидкости частички непрерывно совершают беспорядочные, зигзагообразные движения. Такое движение частиц - позднее названное по имени открывшего его ученого "броуновским движением" - происходит тем интенсивнее, чем меньше масса частиц и чем теплее жидкость, в которой они находятся.

В течение ряда десятилетий ученые безуспешно пытались найти объяснение этому загадочному явлению. В 1880-х годах - за два десятилетия до Эйнштейна - один французский физик предположил, что броуновское движение является результатом беспорядочных ударов, которые испытывают взвешенные частицы со стороны невидимых под микроскопом молекул жидкости. Однако это остроумное объяснение не имело ни математического обоснования, ни экспериментального подтверждения.

В статье "О движении взвешенных в покоящейся жидкости частиц, вытекающем из молекулярно-кинетической теории", Эйнштейн с помощью статистических методов показал, что между скоростью движения взвешенных частиц, их размерами и коэффициентом вязкости используемой жидкости существует количественная взаимосвязь, которая может быть экспериментально проверена.

Эйнштейн, который тогда еще не был знаком с предшествовавшими работами по броуновскому движению, считал, что движение видимых под микроскопом частиц представляет собой проявление движения микроскопически невидимых молекул жидкости. Эйнштейн придал законченную математическую форму статистическому объяснению этого явления, уже сформулированному до него польским физиком Марианом фон Смолуховским. "Эйнштейновский закон броуновского движения" был полностью подтвержден в 1908 году опытами французского физика Жана Перрена, получившего за эти работы в 1926 году Нобелевскую премию.

Работы Эйнштейна по молекулярной физике доказали правильность представления о том, что теплота есть форма энергии неупорядоченного движения молекул. Одновременно они подкрепили атомистическую гипотезу, согласно которой материя - в физическом понимании - состоит из молекул и атомов.

Предложенный Эйнштейном метод определения размеров молекул и его формула для броуновского движения позволяют определить число молекул. До этого физики были вынуждены обходиться приближенными способами, предложенными в 1865 году австрийским физиком Лошмидтом; теперь же благодаря исследованиям Эйнштейна они могли оперировать точными математическими методами.

Наряду с чисто научной ценностью исследования Эйнштейна по тепловому движению имели большое теоретико-познавательное значение. Они показали, что отрицательное или скептическое отношение некоторых естествоиспытателей к атомистической теории ничем не оправдано. Полученное Эйнштейном доказательство правильности атомистических воззрений было настолько убедительным, что химик Вильгельм Оствальд, который до этого вместе с Эрнстом Махом был упорным противником учения об атомах, теперь, по его собственным словам, "был обращен в атомную веру".

Решающий вклад, который Эйнштейн внес в победу атомистики, следует считать одной из его величайших научных заслуг. В этом он является достойным преемником великих материалистов античности: Демокрита, Эпикура и Лукреция.

Фридрих Гернек, 1984 год

Процесс познания складывается таким образом, что блестящие догадки и великие теории, появлению которых мы обязаны творческим гениям, через некоторое время становятся едва ли не тривиальными фактами, которые большинством людей принимается на веру. Многие ли из нас могли бы самостоятельно, на основе наблюдений и размышлений, догадаться, что Земля круглая или что Земля вращается вокруг Солнца, а не наоборот, и наконец, что существуют атомы и молекулы? С высоты современной науки основные положения атомно-молекулярной теории выглядят прописными истинами. Давайте, однако, отвлечемся от давно известных научных результатов, поставим себя на место ученых прошлого и попытаемся дать ответ на два главных вопроса. Во-первых, из чего состоят вещества? Во-вторых, почему вещества бывают разными и почему одни вещества могут превращаться в другие? На решение этих сложных вопросов наука уже потратила более 2 000 лет. В результате появилась атомно-молекулярная теория, основные положения которой можно сформулировать следующим образом.

  • 1. Все вещества состоят из молекул. Молекула - наименьшая частица вещества, обладающая его химическими свойствами.
  • 2. Молекулы состоят из атомов. Атом - наименьшая частица элемента в химических соединениях. Разным элементам соответствуют разные атомы.
  • 3. Молекулы и атомы находятся в непрерывном движении.
  • 4. При химических реакциях молекулы одних веществ превращаются в молекулы других веществ. Атомы при химических реакциях не изменяются.

Как же ученые догадались о существовании атомов?

Атомы были придуманы в Греции в V в. до н. э. Философ Левкипп (500-440 до н. э.) задался вопросом, можно ли каждую частичку материи, какая бы малая она ни была, разделить на еще более мелкие частицы. Левкипп считал, что в результате такого деления можно получить настолько малую частицу, что дальнейшее деление станет невозможным.

Ученик Левкиппа философ Демокрит (460-370 до н. э.) назвал эти крошечные частицы «атомами» (атомос - неделимый). Он считал, что атомы каждого элемента имеют особые размеры и форму и что именно этим объясняются различия в свойствах веществ. Вещества, которые мы видим и ощущаем, образуются при соединении между собой атомов различных элементов, и, изменив природу этого соединения, можно одно вещество превратить в другое.

Демокрит создал атомную теорию почти в современном виде. Однако эта теория была лишь плодом философских размышлений, не связанных с природными явлениями и процессами. Она не была подтверждена экспериментально, поскольку древние греки вообще не проводили экспериментов, они ставили размышления выше наблюдений.

Первый эксперимент, подтверждающий атомную природу вещества, был проведен лишь спустя 2000 лет. В 1662 г. ирландский химик Роберт Бойль (1627-1691) при сжатии воздуха в U-образной трубке под давлением столбика ртути обнаружил, что объем воздуха в трубке обратно пропорционален давлению:

Французский физик Эдм Мариотт (1620-1684) подтвердил это соотношение через 14 лет после Бойля и заметил, что оно выполняется только при постоянной температуре.

Результаты, полученные Бойлем и Мариоттом, можно объяснить, только если признать, что воздух состоит из атомов, между которыми имеется пустое пространство. Сжатие воздуха обусловлено сближением атомов и уменьшением объема пустого пространства.

Если газы состоят из атомов, можно допустить, что твердые вещества и жидкости тоже состоят из атомов. Например, вода при нагревании кипит и превращается в пар, который, подобно воздуху, можно сжать. Значит, водяной пар состоит из атомов. Но если водяной пар состоит из атомов, почему жидкая вода и лёд не могут состоять из атомов? А если это справедливо для воды, это может быть справедливо и для других веществ.

Таким образом, эксперименты Бойля и Мариотта подтвердили существование мельчайших частиц вещества. Оставалось выяснить, что из себя представляют эти частицы.

В течение последующих 150 лет усилия химиков были направлены в основном на установление состава различных веществ. Вещества, которые разлагались на менее сложные вещества, были названы соединениями (сложными веществами), например вода, углекислый газ, железная окалина. Вещества, которые нельзя разложить, назвали элементами (простыми веществами), например водород, кислород, медь, золото.

В 1789 г. великий французский химик Антуан Лоран Лавуазье (1743-1794) опубликовал знаменитую книгу «Элементарный курс химии» (Traite elementaire de chimie), в которой систематизировал накопленные к тому времени знания по химии. В частности, он привел список всех известных элементов, который содержал 33 вещества. Два названия в этом списке были принципиально ошибочными (свет и теплород), а восемь оказались впоследствии сложными веществами (известь, кремнезём и другие).

Развитие техники количественных измерений и методов химического анализа позволило определять соотношение элементов в химических соединениях. Французский химик Жозеф Луи Пруст (1754-1826) после тщательных экспериментов с рядом веществ установил закон постоянства состава.

I Все соединения, независимо от способа получения, содержат эле- . менты в строго определенных весовых пропорциях.

Так, например, сернистый газ, получаемый сжиганием серы, действием кислот на сульфиты или любым другим способом, всегда содержит 1 весовую часть (массовую долю) серы и 1 весовую часть кислорода.

Оппонент Пруста, французский химик Клод Луи Бертолле (1748-1822), напротив, утверждал, что состав соединений зависит от способа их получения. Он считал, что, если в реакции двух элементов один из них взят в избытке, то и в образующемся соединении весовая доля данного элемента будет также больше. Пруст, однако, доказал, что Бертолле получил ошибочные результаты из-за неточного анализа и использования недостаточно чистых веществ.

Удивительно, но ошибочная для своего времени идея Бертолле в настоящее время положена в основу большого научного направления в химии - химического материаловедения. Главная задача материаловедов - получение материалов с заданными свойствами, а основной метод - использование зависимости состава, структуры и свойств материала от способа получения.

Закон постоянства состава, открытый Прустом, имел фундаментальное значение. Он привел к мысли о существовании молекул и подтвердил неделимость атомов. В самом деле, почему в сернистом газе S0 2 весовое (массовое) соотношение серы и кислорода всегда 1:1, а не 1,1: 0,9 или 0,95: 1,05? Можно предположить, что при образовании частицы сернистого газа (впоследствии эта частица была названа молекулой) атом серы соединяется с определенным числом атомов кислорода, причем масса атомов серы равна массе атомов кислорода.

А что происходит, если два элемента могут образовывать между собой несколько химических соединений? На этот вопрос дал ответ великий английский химик Джон Дальтон (1766-1844), который из эксперимента сформулировал закон кратных отношений (закон Дальтона).

I Если два элемента образуют между собой несколько соединений, то. в этих соединениях массы одного элемента, приходящиеся на единицу массы другого элемента, относятся как небольшие целые числа.

Так, в трех оксидах железа на единицу веса (массы) кислорода приходятся 3,5, 2,625 и 2,333 весовых частей (массовых долей) железа соответственно. Отношения этих чисел таковы: 3,5: 2,625 = = 4:3; 3,5: 2,333 = 3: 2.

Из закона кратных отношений следует, что атомы элементов соединяются в молекулы, причем молекулы содержат небольшое число атомов. Измерение массового содержания элементов позволяет, с одной стороны, определять молекулярные формулы соединений, а с другой - находить относительные массы атомов.

Например, при образовании воды одна весовая часть водорода соединяется с 8 весовыми частями кислорода. Если предположить, что молекула воды состоит из одного атома водорода и одного атома кислорода, окажется, что атом кислорода в 8 раз тяжелее атома водорода.

Рассмотрим обратную задачу. Мы знаем, что атом железа в 3,5 раза тяжелее атома кислорода. Из соотношения

следует, что в данном соединении на два атома железа приходится три атома кислорода, т. е. формула соединения - Fe 2 0 3 .

Рассуждая таким образом, Дальтон составил первую в истории таблицу атомных весов элементов. К сожалению, она оказалась во многих отношениях неверной, поскольку при определении атомных весов Дальтон часто исходил из неправильных молекулярных формул. Он считал, что атомы элементов почти всегда (за редким исключением) соединяются попарно. Формула воды по Дальтону - НО. Кроме того, он был уверен, что молекулы всех простых веществ содержат по одному атому.

Правильные формулы воды и многих других веществ были определены при исследовании химических реакций в газовой фазе. Французский химик Жозеф Луи Гей-Люссак (1778-1850) обнаружил, что один объем водорода реагирует с одним объемом хлора и получаются два объема хлороводорода; при электролитическом разложении воды образуются один объем кислорода и два объема водорода и т. д. Это эмпирическое правило было опубликовано в 1808 г. и получило название закона объемных отношений.

I Объемы реагирующих газов относятся друг к другу и к объемам газо- . образных продуктов реакции как небольшие целые числа.

Смысл закона объемных отношений выяснился после великого открытия итальянского химика Амедео Авогадро (1776-1856), сформулировавшего гипотезу (предположение), которая позднее была названа законом Авогадро.

| В равных объемах любых газов при постоянных температуре и дав- ? лении содержится одинаковое число молекул.

Это означает, что все газы ведут себя в некотором смысле одинаково и что объем газа при заданных условиях не зависит от природы (состава) газа, а определяется только числом частиц в данном объеме. Измеряя объем, мы можем определить число частиц (атомов и молекул) в газовой фазе. Великая заслуга Авогадро состоит в том, что он смог установить простую связь между наблюдаемой макроскопической величиной (объемом) и микроскопическими свойствами газообразных веществ (числом частиц).

Анализируя объемные соотношения, найденные Гей-Люссаком, и используя свою гипотезу (которую впоследствии назвали законом Авогадро), ученый установил, что молекулы газообразных простых веществ (кислорода, азота, водорода, хлора) двухатомные. Действительно, при реакции водорода с хлором объем не изменяется, следовательно число частиц также не изменяется. Если предположить, что водород и хлор одноатомны, в результате реакции присоединения исходный объем должен уменьшиться в два раза. Но после реакции объем не изменяется, значит, молекулы водорода и хлора содержат по два атома и реакция идет по уравнению

Аналогично можно установить молекулярные формулы сложных веществ - воды, аммиака, углекислого газа и других веществ.

Как это ни странно, но современники не оценили и не признали выводы, сделанные Авогадро. Ведущие химики того времени Дж. Дальтон и Йенс Якоб Берцелиус (1779-1848) возражали против предположения, что молекулы простых веществ могут быть двухатомные, поскольку полагали, что молекулы образуются только из разных атомов (положительно и отрицательно заряженных). Под давлением таких авторитетов гипотеза Авогадро была отвергнута и постепенно забыта.

Лишь почти через 50 лет, в 1858 г. итальянский химик Станислао Канниццаро (1826-1910) случайно обнаружил работу Авогадро и понял, что она позволяет четко разграничить понятия «атом» и «молекула» для газообразных веществ. Именно Канниццаро предложил определения атома и молекулы, которые приведены в начале данного параграфа, и внес полную ясность в понятия «атомный вес» и «молекулярный вес». В 1860 г. в г. Карлсруэ (Германия) состоялся Первый международный химический конгресс, на котором после долгих дискуссий основные положения атомно-молекулярной теории получили всеобщее признание.

Подведем итоги. В развитии атомно-молекулярного учения можно выделить три фундаментальных этапа.

  • 1. Рождение атомного учения, появление идеи (гипотезы) о существовании атомов (Левкипп и Демокрит).
  • 2. Первое экспериментальное подтверждение атомной теории в опытах со сжатым воздухом (закон Бойля-Мариотта).
  • 3. Открытие важной закономерности о том, что в молекуле атомы разных элементов присутствуют в определенных весовых соотношениях (закон кратных отношений Дальтона), и установление формул газообразных простых веществ (гипотеза Авогадро).

Интересно, что, когда было высказано предположение о существовании атомов, теория была впереди эксперимента (сначала атомы были придуманы, а через 2000 лет это было доказано). В случае молекул эксперимент опередил теорию: идея существования молекул была выдвинута для объяснения экспериментального закона кратных отношений. В этом смысле история атомно-молекулярной теории - характерный пример, который отражает разные пути научных открытий.

В ходе исследований катодных лучей, испускаемых отрицательным электродом (катодом) в вакуумной трубке при электрическом разряде, Жан Батист Перрен в 1895 г. показал, что они являются потоком отрицательно заряженных частиц. Вскоре стало распространяться мнение, что эти отрицательные частицы, названные электронами, представляют собой составную часть атомов.

Атомная теория утверждала, что элементы составлены из дискретных частиц, называемых атомами, и что химические соединения состоят из молекул, частиц большего размера, содержащих два или более атомов. К концу XIX в. атомная теория получила широкое признание среди ученых, особенно среди химиков. Однако некоторые физики полагали, что атомы и молекулы - это не более чем фиктивные объекты, которые введены из соображения удобства и полезны при численной обработке результатов химических реакций. Австрийский физик и философ Эрнст Мах считал, что вопрос о первичном строении материи принципиально неразрешим и не должен быть предметом исследования ученых. Для сторонников атомизма подтверждение дискретности материи было одним из принципиальных вопросов, остававшихся нерешенными в физике.

Продолжая разрабатывать атомную теорию, Перрен выдвинул в 1901 г. гипотезу, что атом представляет собой миниатюрную Солнечную систему, но не смог это доказать.

В 1905 г. Альберт Эйнштейн опубликовал работу о броуновском движении, в которой были даны теоретические обоснования молекулярной гипотезы. Он дал определенные количественные предсказания, однако необходимые для их проверки эксперименты требовали настолько большой точности, что Эйнштейн сомневался в их осуществимости. С 1908 по 1913 г. Перрен (вначале не зная о работе Эйнштейна) выполнил тончайшие наблюдения над броуновским движением, которые подтвердили предсказания Эйнштейна.

Перрен понял, что если движение взвешенных частиц вызывается столкновениями с молекулами, то, основываясь на хорошо известных газовых законах, можно предсказать их средние смещения за определенный промежуток времени, если знать их размер, плотность и некоторые характеристики жидкости (например, температуру и плотность). Требовалось только правильно согласовать эти предсказания с измерениями, и тогда появилось бы веское подтверждение существования молекул. Однако получить частицы нужных размеров и однородности было не так просто. После многих месяцев кропотливого центрифугирования Перрену удалось выделить несколько десятых грамма однородных частиц гуммигута (желтоватого вещества, получаемого из млечного сока растений). После измерения характеристик броуновского движения этих частиц результаты оказались вполне соответствующими молекулярной теории.

Распределение конечных точек горизонтальных смещений частицы камеди, перенесенных параллельно самим себе так, чтобы начала всех смещений находились в центре окружности, опубликованное в работе Перрена ”Броуновское движение и реальность молекул”.

Перрен также изучал седиментацию, или оседание, мельчайших взвешенных частиц. Если молекулярная теория верна, рассуждал он, частицы, размеры которых меньше определенного, вовсе не будут опускаться на дно сосуда: направленная вверх компонента импульса, полученного в результате соударений с молекулами, будет постоянно противодействовать направленной вниз силе тяжести. Если суспензия не подвергается возмущениям, то в конце концов установится седиментационное равновесие, после чего концентрация частиц на различной глубине не будет изменяться. Если свойства суспензии известны, то можно предсказать равновесное распределение по вертикали.

Перрен провел несколько тысяч наблюдений, весьма изощренно и остроумно пользуясь микроскопической техникой и подсчитывая число частиц на разной глубине в одной капле жидкости с шагом по глубине всего в двенадцать сотых миллиметра. Он обнаружил, что концентрация частиц в жидкости экспоненциально убывает с уменьшением глубины, причем числовые характеристики столь хорошо согласовались с предсказаниями молекулярной теории, что результаты его опытов были широко признаны как решающее подтверждение существования молекул. Позже он придумал способы измерения не только линейных смещений частиц в броуновском движении, но и их вращения. Исследования Перрена позволили ему вычислить размеры молекул и число Авогадро, т.е. число молекул в одном моле (количестве вещества, масса которого, выраженная в граммах, численно равна молекулярному весу этого вещества). Он проверил полученное им значение числа Авогадро с помощью пяти различных типов наблюдений и нашел, что она удовлетворяет им всем с учетом минимальной экспериментальной ошибки. (Принятое ныне значение этого числа составляет примерно 6,02·1023; Перрен получил величину на 6% более высокую.) К 1913 г., когда он суммировал уже многочисленные к тому времени свидетельства дискретной природы материи в своей книге “Les Atomes” - «Атомы» реальность существования как атомов, так и молекул была признана почти повсеместно.

В 1926 г. Перрен получил Нобелевскую премию по физике «за работу по дискретной природе материи и в особенности за открытие седиментационного равновесия».


Основные положения молекулярно-кинетической теории.

1). Любое вещество имеет дискретное (прерывистое) строение. Оно состоит из мельчайших частиц - молекул и атомов, разделенных между собой промежутками. Молекулы являются наименьшими частицами, обладающими химическими свойствами данного вещества. Атомы являются наименьшими частицами, обладающими свойствами химических элементов, входящих в состав данного вещества.

2). Молекулы находятся в состоянии непрерывного хаотического движения, называемого тепловым. При нагревании вещества скорость теплового движения и кинетическая энергия его частиц увеличиваются, а при охлаждении - уменьшаются. Степень нагретости тела характеризуется его температурой, которая является мерой средней кинетической энергии поступательного движения молекул этого тела.

3). Между молекулами в процессе их взаимодействия возникают силы притяжения и отталкивания.

Экспериментальное обоснование молекулярно-кинетической теории

Наличие у веществ проницаемости, сжимаемости и растворимости свидетельствует о том, что они не сплошные, а состоят из отдельных, разделенных промежутками частиц. С помощью современных методов исследования (электронный и ионный микроскопы) удалось получить изображения наиболее крупных молекул.

Наблюдения броуновского движения и диффузии частиц показали, что молекулы находятся в непрерывном движении.

Наличие прочности и упругости тел, смачиваемости, прилипания, поверхностного натяжения в жидкостях и т. д. - все это доказывает существование сил взаимодействия между молекулами.

Броуновское движение.

В 1827 г. английский ботаник Броун, наблюдая в микроскоп взвесь цветочной пыльцы в воде, обнаружил, что крупинки пыльцы непрерывно хаотически движутся. Беспорядочное движение взвешенных в жидкости очень маленьких частиц твердого тела и получило название броуновского движения. Было установлено, что броуновское движение происходит неограниченно долго. Интенсивность движения взвешенных в жидкости частиц не зависит от вещества этих частиц, а зависит от их размеров. Крупные частицы остаются неподвижными. Интенсивность броуновского движения увеличивается при повышении температуры жидкости и уменьшается при ее понижении. Взвешенные в жидкости частицы движутся под действием молекул жидкости, которые сталкиваются с ними. Молекулы движутся хаотично, поэтому силы, с которыми они действуют на взвешенные частицы, непрерывно изменяются по модулю и направлению. Это и приводит к беспорядочному движению взвешенных частиц. Таким образом, броуновское движение наглядно подтверждает существование моле­кул и хаотический характер их теплового движения. (Количественную теорию броуновского движения разработал в 1905 г. Эйнштейн.)

Диффузией называют явление самопроизвольного взаимного проникновения молекул граничащих между собой веществ в межмолекулярные промежутки друг друга. (Диффузию, происходящую через полупроницаемые перегородки, называют осмосом.) Примером диффузии в газах является распространение запахов. В жидкостях наглядным проявлением диффузии является перемешивание против действия силы тяжести жидкостей разной плотности (при этом молекулы более тяжелой жидкости поднимаются вверх, а более легкой - опускаются вниз). Диффузия происходит и в твердых телах. Это доказывает та­кой опыт: две отполированные плоские пластинки из золота и свинца, положенные друг на друга, выдерживались при комнатной температуре в течение 5 лет. За это время пластинки срослись, образовав единое целое, причем молекулы золота проникли в свинец, а молекулы свинца - в золото на глубину до 1 см. 1 Скорость диффузии зависит от агрегатного состояния вещества и температуры. С повышением температуры скорость диффузии возрастает, а с понижением - уменьшается.

Размеры и масса молекул

Размер молекулы является величиной условной. Его оценивают следующим образом. Между молекулами наряду с силами притяжения действуют и силы отталкивания, поэтому молекулы могут сближаться лишь до некоторого расстояния. Расстояние предельного сближения центров двух молекул называют эффективным диаметром молекулы и обозначают о (при этом условно считают, что молекулы имеют сферическую форму). За исключением молекул органических веществ, содержащих очень большое число атомов, большинство молекул по порядку величины имеют диаметр 10 -10 м и массу 10 -26 кг.

Относительная молекулярная масса

Поскольку массы атомов и молекул чрезвычайно малы, при расчетах обычно используют не абсолютные, а относительные значения масс, получаемые путем сравнения масс атомов и молекул с атомной единицей массы, в качестве которой выбрана 1/12 часть массы атома углерода (т. е. пользуются углеродной шкалой атомных масс). Относительной молекулярной (или атомной ) массой М r (или А r ) вещества называют величину, равную отношению массы молекулы (или атома) этого вещества к 1/12 массы атома углерода 12 С. Относительная молекулярная (атомная) масса является величиной, не имеющей размерности. Относительная атомная масса каждого химического элемента указана в таблице Менделеева. Если вещество состоит из молекул, образованных из атомов различных химических элементов, относительная молекулярная масса данного вещества равна сумме относительных атомных масс элементов, входящих в состав данного вещества.

Количество вещества

Количество вещества, содержащегося в теле, определяется числом молекул в этом теле (или числом атомов). Поскольку число молекул в макроскопических телах очень велико, для определения количества вещества в теле сравнивают число молекул в этом теле с числом атомов в 0,012 кг углерода. Иными словами, количеством вещества v называют величину, равную отношению числа молекул (или атомов) N в данном теле к числу атомов N A в 12 г углерода, т. е.

v = N/N A . Количество вещества выражают в молях. Моль равен количеству вещества системы, содержащей столько же структурных элементов (атомов, молекул, ионов), сколько содержится атомов в углероде-12 массой 0,012 кг.

Постоянная Авогадро. Молярная масса

Согласно определению понятия моль, в 1 моль любого вещества содержится одинаковое число молекул или атомов. Это число N A , равное числу атомов в 0,012 кг (т. е. в 1 моль) углерода, называют постоянной Авогадро. Молярной массой М какого-либо вещества называют массу 1 моль этого вещества . Молярную массу вещества выражают в килограммах на моль.

Количество вещества можно найти как

Массу одной молекулы можно найти как или учитывая что относительная молекулярная масса числена равна массе одной молекулы выраженной в а.е.м. (1 а.е.м. = 1,66×10 -27 кг).